Nafionꢀ NR-212 over the measured relative humidity range. It
should be noted that the conductivity of B20P80 exceeds that of
PPDSA. We believe that the presence of the biphenyl segments
might contribute to an increase in the frozen-in free volume with
a resultant increase of proton conductivity. No structural char-
acterization was performed, however, to quantify the confor-
mational or configurational differences. Since PPDSA and
3 M. Yoshitake and A. Watakabe, Fuel Cells I, 2008, 215, 127–
155.
M. Schuster, K. D. Kreuer, H. T. Andersen and J. Maier,
4
Macromolecules, 2007, 40, 598–607.
5 M. Schuster, C. C. de Araujo, V. Atanasov, H. T. Andersen,
K. D. Kreuer and J. Maier, Macromolecules, 2009, 42, 3129–
3
137.
M. J. Kayser, M. X. Reinholdt and S. Kaliaguine, J. Phys. Chem. B,
011, 115, 2916–2923.
6
2
ꢀ1
B20P80 have a very high IEC ($8.0 meq. g ) and are water
soluble, at high relative humidity the membranes absorb large
amounts of water, swell significantly and eventually deform; their
conductivity could not be measured above 65% RH. Among all
the grafted polymer membranes, the conductivity of PPDSA-g-
DDB03% is very close to that of PPDSA, but the resultant
membrane is still water-soluble, losing its mechanical strength
and dimensional stability at higher relative humidity. The proton
conductivity of the polymer membranes decreases with the
increase of alkylbenzene graft fraction. However, PPDSA-g-
7 S. Kaliaguine, S. D. Mikhailenko, K. P. Wang, P. Xing, G. Robertson
and M. Guiver, Catal. Today, 2003, 82, 213–222.
8
9
K. Miyatake, B. Bae, T. Yoda, M. Uchida, H. Uchida and
M. Watanabe, J. Phys. Chem. B, 2010, 114, 10481–10487.
K. C. Chen, Z. X. Hu, N. Endo, J. H. Fang, M. Higa and
K. Okamoto, J. Membr. Sci., 2010, 351, 214–221.
1
1
1
1
0 L. Akbarian-Feizi, S. Mehdipour-Ataei and H. Yeganeh, Int. J.
Hydrogen Energy, 2010, 35, 9385–9397.
1 H. J. Kim, M. H. Litt, S. Y. Nam and E. M. Shin, Macromol. Res.,
2003, 11, 458–466.
2 S. Seesukphronrarak, K. Ohira, K. Kidena, N. Takimoto,
C. S. Kuroda and A. Ohira, Polymer, 2010, 51, 623–631.
3 C. H. Fujimoto, M. A. Hickner, C. J. Cornelius and D. A. Loy,
Macromolecules, 2005, 38, 5010–5016.
DDB10%,
PPDSA-g-OcB11%
and
B20P80-g-OcB07%
membranes are water insoluble with proton conductivity about
14 M. Litt, J. W. Kang, K. Si and R. Wycisk, Prepr. Symp. – Am. Chem.
Soc., Div. Fuel Chem., 2009, 54, 437–438.
15 J. A. Mader and B. C. Benicewicz, Macromolecules, 2010, 43, 6706–
three times that of Nafionꢀ NR-212. Their conductivity of 0.10-
ꢀ
1
ꢁ
0
.14 S cm at 30% RH and 80 C reaches or exceeds the US
6
715.
ꢀ1
Department of Energy 2015 target of 0.10 S cm . The observed
high conductivity, especially at low relative humidity, is attrib-
uted to the high IEC and high l due to the ‘‘frozen-in free
16 J. Mader, L. Xiao, T. J. Schmidt and B. C. Benicewicz, Adv. Polym.
Sci., 2008, 216, 63–124.
1
1
1
2
7 S. B. Qing, W. Huang and D. Y. Yan, Eur. Polym. J., 2005, 41, 1589–
595.
8 J. A. Asensio, S. Borros and P. Gomez-Romero, J. Polym. Sci., Part
A: Polym. Chem., 2002, 40, 3703–3710.
9 J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell and M. Litt,
J. Electrochem. Soc., 1995, 142, L121–L123.
0 M. Litt, R. Ameri, Y. Wang, R. Savinell and J. Wainwright, MRS
Online Proc. LIbr., 1999, 548, 313–323.
1
21
volume’’ in these membranes.
Conclusions
Poly(para-phenylene disulfonic acid), PPDSA, and poly-
(
biphenyl disulfonic acid-co-phenylene disulfonic acid), B20P80,
21 M. Litt, S. Granados-Focil and J. Kang, ACS Symp. Ser., 2010, 1040,
9–63.
4
were synthesized through Ullmann coupling in N-methyl pyr-
rolidinone using copper as the coupling reagent. Water insoluble
poly(para-phenylene sulfonic acid)s were obtained by grafting
long-tail alkylbenzene on the polymer backbones via sulfone
bridges. NMR, TGA, DSC and viscometry were used for
structural characterization of the polymers. The grafting degree
was tailored by varying the grafting reaction temperature and
time. Water absorption and conductivity for all the materials
were measured. These polymers had a very high IEC and
absorbed water strongly at low humidity, which facilitated fast
proton transport. Membranes cast from these polymers exhibi-
ted excellent proton conductivity at elevated temperature and
low relative humidity, tenfold higher than that of Nafionꢀ 212.
This exceptional conductivity could make these materials great
candidates for membranes in proton exchange fuel cells oper-
ating at elevated temperature, if the mechanical properties could
be improved.
2
2 M. Litt, S. Granados-Focil, J. Kang, K. Si and R. Wycisk, ECS
Trans., 2010, 33, 695–710.
23 M. Litt and J. Kang, Prepr. Symp. – Am. Chem. Soc., Div. Fuel Chem.,
2008, 53, 785–786.
2
2
2
2
4 M. Litt and S. Granados-Focil, PMSE Prepr., 2006, 95, 138–
39.
5 H. J. Kim, M. Litt, E. M. Shin and S. Y. Nam, Macromol. Res., 2004,
12, 545–552.
6 S. Granados-Focil and M. H. Litt, Prepr. Symp. – Am. Chem. Soc.,
Div. Fuel Chem., 2004, 49, 528–529.
7 J. Fang, X. Guo and M. Litt, Trans. Mater. Res. Soc. Jpn., 2004, 29,
1
2
28 M. H. Litt and Y. Zhang, PMSE Prepr., 2003, 89, 21–22.
541–2546.
2
3
9 H. J. Kim, M. H. Litt, E. M. Shin and S. Y. Nam, Polym. Prepr. (Am.
Chem. Soc., Div. Polym. Chem.), 2001, 42, 486–487.
0 Y. Zhang, M. Litt, R. F. Savinell, J. S. Wainright and J. Vendramini,
Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 2000, 41, 1561–
1
562.
1 Y. Zhang, M. Litt, R. F. Savinell and J. S. Wainright, Polym. Prepr.
Am. Chem. Soc., Div. Polym. Chem.), 1999, 40, 480–481.
2 J. Dean, Lange’s Handbook of Chemistry, McGraw Hill, 14th edn,
992.
3 A. Carotenuto and M. DellIsola, Int. J. Thermophys., 1996, 17, 1423–
439.
3
3
3
(
1
Acknowledgements
1
3
3
4 L. Greenspan, J. Res. Natl. Bur. Stand., Sect. A, 1977, 81, 89–96.
5 A. H. Lewin and T. Cohen, Tetrahedron Lett., 1965, 6, 4531–
4536.
Funding of the project by the United States Department of
Energy, grant no. DE-FC36-06GO16039, is gratefully
acknowledged.
3
3
6 P. E. Fanta, Synthesis, 1974, 1974, 9–21.
7 J. Hassan, M. Sevignon, C. Gozzi, E. Schulz and M. Lemaire, Chem.
Rev., 2002, 102, 1359–1469.
8 Y. M. Xiao, B. Fu and Z. H. Qin, Chin. J. Org. Chem., 2005, 25, 751–
3
Notes and references
7
62.
1
J. E. McGrath, M. A. Hickner, H. Ghassemi, Y. S. Kim and
B. R. Einsla, Chem. Rev., 2004, 104, 4587–4611.
K. A. Mauritz and R. B. Moore, Chem. Rev., 2004, 104, 4535–
39 T. Yamamoto, B. K. Choi and K. Kubota, Polym. J., 2000, 32, 619–
621.
40 R. Rulkens, G. Wegner, V. Enkelmann and M. Schulze, Ber. Bunsen-
Ges. Phys. Chem., 1996, 100, 707–714.
2
4
585.
2
0916 | J. Mater. Chem., 2012, 22, 20907–20917
This journal is ª The Royal Society of Chemistry 2012