Chemistry - A European Journal
10.1002/chem.201903224
FULL PAPER
General: All reactions using air- and moisture-sensitive compounds were
carried out by the standard Schlenk techniques under a nitrogen
atmosphere unless otherwise noted. Dehydrated THF were purchased
from Kanto Chemical Company and purified by SPS[28] prior to use.
Dehydrated 1,4-dioxane was purchased from Wako Pure Chemical
Industries and used as received. Grignard reagents were prepared by a
standard procedure or purchased from Aldrich or TCI. These Grignard
Acknowledgements
This work was partially supported by a Grant-in-Aid for Scientific
Research (A) (JP25248025, to NK), a Grant-in-Aid for Young
Scientists (A) (JP16H06039, to TI), and Grant-in-Aid for Scientific
Research on Innovative Areas “Middle Molecular Strategy”
reagents were used after titration using I
2
. 1,3,6,8-Tetrabromopyrene was
(
(
JP16H01150 and JP18H04410, to TI) and “-System Figuration”
JP17H05155, to YT). The computations were performed using
prepared according to literature.[29] Analytical grade CH
2
Cl for UV-Vis and
2
fluorescence measurements was purchased from Kishida and was used
as received.
the Research Center for Computational Science, Okazaki, Japan.
Synthesis of 1,3,6,8-tetraalkylpyrenes:[12c] To a 100 mL three necked
flask containing 1,3,6,8-tetrabromopyrene (414 mg, 0.80 mmol) and
Keywords: alkyl • crystal engineering • fluorescence • pyrene •
solid-state structure
NiCl
RMgCl (in THF, 9.6 mmol). After refluxing for 48 h, 1 M HCl aq. was
carefully added to the reaction mixture and then diluted by 50 mL of H O.
The aqueous layer was extracted by Et O (50 mL x 2). The organic layer
was dried over Na SO , concentrated, and purified by silica gel column
chromatography (eluent: hexane or hexane/EtOAc 9/1). Further
purification by GPC (eluent: CHCl ) followed by recrystallization from
CH Cl/MeOH (twice) gave a pure sample for the analysis of photophysical
properties.
2
(dppe) (21 mg, 0.04 mmol) was added 1,4-dioxane (24 mL) and
[
[
1]
2]
For a review, see: T. M. Figueira-Duarte, K. Müllen, Chem. Rev. 2011,
11, 7260.
2
1
2
a) T. Oyamada, S. Akiyama, M. Yahiro, M. Saigou, M. Shiro, H. Sasabe,
C. Adachi, Chem. Phys. Lett. 2006, 421, 295; b) S. Bernhardt, M. Kastler,
V. Enkelmann, M. Baumgarten, K. Müllen, Chem. Eur. J. 2006, 12, 6117;
c) Y. Sagara, T. Mutai, I. Yoshikawa, K. Araki, J. Am. Chem. Soc. 2007,
2
4
=
3
3
129, 1520; d) J. N. Moorthy, P. Natarajan, P. Venkatakrishnan, D.-F.
Huang, T. J. Chow, Org. Lett. 2007, 9, 5215, e) P. Anant, N. T. Lucas, J.
M. Ball, T. D. Anthopoulos, J. Jacob, Synth. Metals 2010, 160, 1987; f)
G. Wang, J. Geng, X. Zhang, L. Cai, D. Ding, K. Li, L. Wang, Y.-H. Lai,
B. Liu, Polym. Chem. 2012, 3, 2464; g) R. R. Reghu, J. V. Grazulevicius,
J. Simokaitiene, A. Miasojedovas, K. Kazlauskas, S. Jursenas, P. Data,
K. Karon, M. Lapkowski, V. Gaidelis, V. Jankauskas, J. Phys. Chem. C
2012, 116, 15878; h) S. Yamaguchi, I. Yoshikawa, T. Mutai, K. Araki, J.
Mater. Chem. 2012, 22, 20065; i) J.-Y. Hu, X. Feng, H. Tomiyasu, N.
Seto, U. Rayhan, M. R. J. Elsegood, C. Redshaw, T. Yamato, J. Mol.
Struct. 2013, 1047, 194; j) K. R. Idzik, T. Licha, V. Lukeš, P. Rapta, J.
Frydel, M. Schaffer, E. Taeuscher, R. Beckert, L. Dunsch, J. Fluoresc.
Steady-state UV/Vis absorption and fluorescence spectroscopy:
UV/Vis and fluorescence measurements in solution were performed with a
U-3500 UV/Vis spectrophotometer (HITACHI) and
spectrofluorometer (Jasco), respectively. The samples were dissolved in
CH Cl
(1.0 x 10–5 M).
a
FP-8500
2
2
Solid-state UV/Vis absorption and fluorescence spectroscopy and
quantum yields: UV/Vis measurements of crystalline samples were
performed with a V-770 UV/Vis spectrophotometer (Jasco). Fluorescence
and fluorescence quantum yields of crystalline samples were measured
on a FP-6500 spectrofluorometer (Jasco) with ISF-513 fluorescence
integrate sphere unit (Jasco).
2014, 24, 153; k) M. Sang, S. Cao, J. Yi, J. Huang, W.-Y. Lai, W. Huang,
RSC Adv. 2016, 6, 6266; l) T. H. El-Assaad, M. Auer, R. Castañeda, K.
M. Hallal, F. M. Jradi, L. Mosca, R. S. Khnayzer, D. Patra, T. V.
Timofeeva, J.-L. Brédas, E. J. W. List-Kratochvil, B. Wex, B. R. Kaafarani,
J. Mater. Chem. C 2016, 4, 3041; m) R. K. Konidena, K. R. J. Thomas,
M. Singh, J.-H. Jou, J. Mater. Chem. C 2016, 4, 4246; n) K. P. Gan, M.
Yoshio, T. Kato, J. Mater. Chem. C 2016, 4, 5073.
Time-resolved
fluorescence
spectroscopy:
Time-resolved
spectroscopic measurement was conducted with a time-correlated single-
photon counting fluorometer (Quantaurus-Tau C11367, Hamamatsu
Photonics).
[3]
4]
J. A. Mikroyannidis, Synth. Mat. 2005, 155, 125.
[
a) H. Maeda, T. Maeda, K. Mizuno, K. Fujimoto, H. Shimizu, M. Inouye,
Chem. Eur. J. 2006, 12, 824; b) K. Fujimoto, H. Shimizu, M. Furusyo, S.
Akiyama, M. Ishida, U. Furukawa, T. Yokoo, M. Inouye, Tetrahedron
Crystal structure determinations: X-ray crystallographic measurements
were made on a Rigaku RAXIS-RAPID diffractometer with a 2-D area
detector using graphite-monochromated Cu-K radiation ( = 1.54187 Å)
or a Rigaku XtaLAB Synergy diffractometer with a HyPix detector using
mirror-monochromated Cu-K ( = 1.54184 Å) or Mo-K ( = 0.71073 Å)
radiation. Crystals were mounted on a glass fiber and placed in a nitrogen
stream at 123(2) K. The structures were solved by direct methods
2009, 65, 9357; c) H. M. Kim, Y. O. Lee, C. S. Lim, J. S. Kim, B. R. Cho,
J. Org. Chem. 2008, 73, 5127; d) G. Venkataramana, S. Sankararaman,
Eur. J. Org. Chem. 2005, 4162; e) A. Hayer, V. de Halleux, A. Köhler, A.
El-Garoughy, E. W. Meijer, J. Barberá, J. Tant, J. Levin, M. Lehmann, J.
Gierschner, J. Cornil. Y. H. Geerts, J. Phys. Chem. B 2006, 110, 7653;
f) K. R. J. Thomas, N. Kapoor, M. N. K. P. Bolisetty, J.-H. Jou, Y.-L. Chen,
Y.-C. Jou, J. Org. Chem. 2012, 77, 3921; g) F. Xu, T. Nishida, K.
Shinohara, L. Peng, M. Takezaki, T. Kamada, H. Akashi, H. Nakamura,
K. Sugiyama, K. Ohta, A. Orita, J. Otera, Organometallics 2017, 36, 556;
h) C. L. Devi, K. Yesudas, N. S. Makarov, V. J. Rao, K. Bhanuprakash,
J. W. Perry, J. Mater. Chem. C 2015, 3, 3730; i) X. Feng, H. Tomiyasu,
J.-Y. Hu, X. Wei, C. Redshaw, M. R. J. Elsegood, L. Horsburgh, S. J.
Teat, T. Yamato, J. Org. Chem. 2015, 80, 10973; j) S. Diring, F. Camerel,
B. Donnio, T. Dintzer, S. Toffanin, R. Capelli, M. Muccini, R. Ziessel, J.
Am. Chem. Soc. 2009, 131, 18177; k) P. E. Gama, R. J. Corrêa, S. J.
Garden, J. Lumin. 2015, 161, 37.
(
F
SHELXS97, SHELXT,[31] or SIR2008[32]). The structure was refined on
[30]
2
by the full-matrix least-squares method using SHELXL97[30] or
OLEX2 . The non-hydrogen atoms were anisotropically refined, while the
hydrogen atoms were refined using the riding model.
[
33]
CCDC 1939308 (1-Me at 123 K), 1939309 (1-Et at 123 K), 1939310 (1-Pr
at 123 K), 1939311 (1-Bu at 123 K), 1939312 (1-Pen (Slipped-parallel)
at 123 K), 1939313 (1-Pen (Isolated-pair) at 123 K), 1939314 (1-isoBu
at 123 K), 1939315 (1-neoPen at 123 K), 1939316 (1-Et at 293 K),
1939317 (1-Pr at 293 K), and 1939318 (1-isoBu at 293 K) contain the
supplementary crystallographic data for this paper. These data are
provided free of charge by The Cambridge Crystallographic Data Center.
[
[
5]
6]
R. Muangpaisal, M.-C. Ho, T.-H. Huang, C.-H. Chen, J.-Y. Shen, J.-S. Ni,
J.-T. Lin, T.-H. Ke, L.-Y. Chen, C.-C. Wu, C. Tsai, Org. Elect. 2014, 15,
2148.
F. M. Winnik, Chem. Rev. 1993, 93, 587.
This article is protected by copyright. All rights reserved.