10.1002/ejoc.201900406
European Journal of Organic Chemistry
COMMUNICATION
Chem. Int. Ed. 2018, 57, 10034-10072; Angew. Chem. 2018, 130,
10188-10228.
In conclusion, in the report we developed a Minisci-type C-H
cyanoalkylation of heteroarenes via visible light photoredox
catalysis under mild conditions. This photochemical method
[5]
D. A. DiRocco, K. Dykstra, S. Krska, P. Vachal, D. V. Conway, M.
Tudge, Angew. Chem. Int. Ed. 2014, 53, 4802-4806; Angew. Chem.
2014, 126, 4902-4906.
provided
a convenient access to cyanoalkyl substituted
heteroarenes, which had great meaning in drug discovery.
Besides, the developed protocol was applicable with a broad
substrate scope of heteroarenes. Finally, we clarified a possible
visible-light induced photoredox pathway by series of
mechanistic studies.
[6]
[7]
a) J. Jin, D. W. MacMillan, Nature 2015, 525, 87-90; b) G.-X. Li, X.-F.
Hu, G. He, G. Chen, Chem. Sci. 2019, 10, 688-693.
a) R. A. Garza-Sanchez, A. Tlahuext-Aca, G. Tavakoli, F. Glorius, ACS
Catal. 2017, 7, 4057-4061; b) J.-H. Wang, G.-X. Li, G. He, G. Chen,
Asian J. Org. Chem. 2018, 7, 1307-1310.
[8]
[9]
a) W.-M. Cheng, R. Shang, Y. Fu, ACS Catal. 2017, 7, 907-911; b) W.-
M. Cheng, R. Shang, M.-C. Fu, Y. Fu, Chem. - Eur. J. 2017, 23, 2537-
2541; c) R. S. J. Proctor, H. J. Davis, R. J. Phipps, Science 2018, 360,
419-422.
Experimental Section
a) J. K. Matsui, D. N. Primer, G. A. Molander, Chem. Sci. 2017, 8,
3512-3522; b) J. K. Matsui, G. A. Molander, Org. Lett. 2017, 19, 950-
953.
Isoquinoline (1aa, 0.1 mmol), oxime ester (2aa, 0.2 mmol), TFA (0.15
mmol) and 1.0 mmol % photocatalyst fac-Ir(ppy)3 in CH3CN (1.0 mL)
were placed in a dry glass tube, the system was degassed using three
freeze-pump-thaw cycles with nitrogen, and then stirred at room
temperature under the irradiation of 15 W blue LED till the reaction
finished (monitored by TLC). Remove the solvent in vacuo, residues
were purified by silica gel column chromatograph using
petroleum/ethylacetate elutent (5:1-2:1) to afford the desired Minisci
alkylation products.
[10] G.-X. Li, C. A. Morales-Rivera, Y.-X. Wang, F. Gao, G. He, P. Liu, G.
Chen, Chem. Sci. 2016, 7, 6407-6412.
[11] F. J. R. Klauck, M. J. James, F. Glorius, Angew. Chem. Int. Ed. 2017,
56, 12336-12339; Angew. Chem. 2017, 129, 12505-12509.
[12] A. Gutierrez-Bonet, C. Remeur, J. K. Matsui, G. A. Molander, J. Am.
Chem. Soc. 2017, 139, 12251-12258.
[13] P. Nuhant, M. S. Oderinde, J. Genovino, A. Juneau, Y. Gagne, C. Allais,
G. M. Chinigo, C. Choi, N. W. Sach, L. Bernier, Y. M. Fobian, M. W.
Bundesmann, B. Khunte, M. Frenette, O. O. Fadeyi, Angew. Chem. Int.
Ed. 2017, 56, 15309-15313; Angew. Chem. 2017, 129, 15511-15515.
[14] G.-X. Li, X.-F. Hu, G. He, G. Chen, ACS Catal. 2018, 8, 11847-11853.
[15] a) S.-B. Liu, Y. Yu, L. S. Liebeskind, Org. Lett. 2007, 9, 1947-1950; b)
H. Jiang, X.-D. An, K. Tong, T.-Y. Zheng, Y. Zhang, S.-Y. Yu, Angew.
Chem. Int. Ed. 2015, 54, 4055-4059; Angew. Chem. 2015, 127, 4127-
4131.
Acknowledgments ((optional))
We are grateful for the financial support from the NSFC of China
(No. 21672047) SKLUWRE (No. 2018DX02) and The Science
and Technology Plan of Shenzhen (JCYJ20180306172044124)
[16] a) X. Shen, J. J. Zhao, S. Yu, Org. Lett. 2018, 20, 5523-5527; b) J.
Davies, S. P. Morcillo, J. J. Douglas, D. Leonori, Chem. – Eur. J. 2018,
24, 12154-12163.
Keywords: Cyanoalkylation • Heteroarenes • Oximes •
Photocatalysis • C-C Bond
[17] a) L.-Y. Li, H.-G. Chen, M.-J. Mei, L. Zhou, Chem. Commun. 2017, 53,
11544-11547; b) Y.-W. Li, R.-Y. Mao, J. Wu, Org. Lett. 2017, 19, 4472-
4475; c) H. Jiang, A. Studer, Angew. Chem. Int. Ed. 2017, 56, 12273-
12276; Angew. Chem. 2018, 130, 10867-10871; d) R.-Y. Mao, Z. Yuan,
Y.-W. Li, J. Wu, Chem. - Eur. J. 2017, 23, 8176-8179; e) J.-J. Li, P.-X.
Zhang, M. Jiang, H.-J. Yang, Y.-F. Zhao, H. Fu, Org. Lett. 2017, 19,
1994-1997; f) W. Shu, C. Nevado, Angew. Chem. Int. Ed. 2017, 56,
1881-1884; Angew. Chem. 2017, 129, 1907-1910; g) X.-Y. Yu, J.-R.
Chen, P.-Z. Wang, M.-N. Yang, D. Liang, W.-J. Xiao, Angew. Chem. Int.
Ed. 2018, 57, 738-743; Angew. Chem. 2018, 130, 746-751; h) E. M.
Dauncey, S. P. Morcillo, J. J. Douglas, N. S. Sheikh, D. Leonori, Angew.
Chem. Int. Ed. 2018, 57, 744-748; Angew. Chem. 2018, 130, 752-756.
[18] Y.-R. Gu, X.-H. Duan, L. Yang, L.-N. Guo, Org. Lett. 2017, 19, 5908-
5911.
[1]
a) M. E. Welsch, S. A. Snyder, B. R. Stockwell, Curr. Opin. Chem. Biol.
2010, 14, 347-361; b) S. Banerjee, K. E. Arnst, Y. Wang, G. Kumar, S.
Deng, L. Yang, G. B. Li, J. Yang, S. W. White, W. Li, D. D. Miller, J.
Med. Chem. 2018, 61, 1704-1718.
[2]
[3]
F. Minisci, R. Bernardi, F. Bertini, R. Galli, M. Perchinummo,
Tetrahedron 1971, 27, 3575-3579.
a) Q.-Z. Zheng, N. Jiao, Chem. Soc. Rev. 2016, 45, 4590-4627; b) K.
Murakami, S. Yamada, T. Kaneda, K. Itami, Chem. Rev. 2017, 117,
9302-9332; c) Y. Wei, P. Hu, M. Zhang, W.-P. Su, Chem. Rev. 2017,
117, 8864-8907; d) G.-C. Fang, X.-F. Cong, G. Zanoni, Q. Liu, X.-H. Bi,
Adv. Synth. Catal. 2017, 359, 1422-1502.
[4]
a) C. K. Prier, D. A. Rankic, D. W. MacMillan, Chem. Rev. 2013, 113,
5322-5363; b) J. C. Tellis, C. B. Kelly, D. N. Primer, M. Jouffroy, N. R.
Patel, G. A. Molander, Acc. Chem. Res. 2016, 49, 1429-1439; c) M. D.
Karkas, J. A. Porco, Jr., C. R. Stephenson, Chem. Rev. 2016, 116,
9683-9747; d) K. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016,
116, 10035-10074; e) Y.-T. Zhao, W.-J. Xia, Chem. Soc. Rev. 2018, 47,
2591-2608; f) L. Marzo, S. K. Pagire, O. Reiser, B. Kꢀnig, Angew.
[19] a) J. A. Porras, I. N. Mills, W. J. Transue, S. Bernhard, J. Am. Chem.
Soc. 2016, 138, 9460-9472; b) M. J. James, J. L. Schwarz, F. Strieth-
Kalthoff, B. Wibbeling, F. Glorius, J. Am. Chem. Soc. 2018, 140, 8624-
8628.
This article is protected by copyright. All rights reserved.