H. Park et al. / Tetrahedron Letters 42 (2001) 4645–4648
4647
Acknowledgements
B
A
CD+
N+
This research was supported by grants of the Research
Institute of Pharmaceutical Sciences in College of Phar-
macy of Seoul National University and Aminogen Co.,
Korea, via the Research Center of New Drug Develop-
ment of Seoul National University.
O
N
+CD
3
References
Figure 2.
1. (a) Makosza, M.; Ludwikow, M. Rocz. Chem. 1965, 39,
1223; (b) Makosza, M.; Serafinowa, B. Rocz. Chem. 1965,
39, 1401, 1595, 1647, 1799, 1805; (c) Makosza, M. Pure
Appl. Chem. 1975, 43, 439; (d) Dolling, U.-H.; Davis, P.;
Grabowski, E. J. J. Am. Chem. Soc. 1984, 106, 446; (e)
Hughes, D. L.; Dolling, U.-H.; Ryan, K. M.; Schoe-
newaldt, E. F.; Grabowski, E. J. J. Org. Chem. 1987, 52,
4745; (f) Masui, M.; Ando, A.; Shioiri, T. Tetrahedron
Lett. 1988, 29, 2835; (g) Nerinckx, W.; Vandewalle, M.
Tetrahedron: Asymmetry 1990, 1, 265; (h) Lee, T. B. K.;
Wong, G. S. K. J. Org. Chem. 1991, 56, 872; (i) Eddine, J.
J.; Cherqaoui, M. Tetrahedron: Asymmetry 1995, 6, 1225;
(j) Dehmlow, E. V.; Dehmlow, S. S. Phase Transfer Cataly-
sis, 3rd ed.; VCH: Weinheim, 1993; (k) Catalytic Asym-
metric Synthesis, Ojima, I., Ed., VCH: New York, 1993.
2. (a) O’Donnell, M. J.; Benett, W. D.; Wu, S. J. Am. Chem.
Soc. 1989, 111, 2353; (b) Lipkowitz, K. B.; Cavanaugh, M.
W.; Baker, B.; O’Donnell, M. J. J. Org. Chem. 1991, 56,
5181; (c) O’Donnell, M. J.; Wu, S. Tetrahedron: Asymme-
try 1992, 3, 591; (d) O’Donnell, M. J.; Wu, S.; Huffman, J.
C. Tetrahedron 1994, 50, 4507; (e) O’Donnell, M. J. et al.
US Patent 5,554,753, September 10, 1996; (f) O’Donnell,
M. J.; Esikova, I. A.; Mi, A.; Shullenberger, D. F.; Wu, S.
In Phase-Transfer Catalysis; Halpern, M. E., Ed.; ACS
Symposium Series 659; American Chemical Society: Wash-
ington, DC, 1997; Chapter 10; (g) O’Donnell, M. J.;
Delgado, F.; Pottorf, R. Tetrahedron 1999, 55, 6347.
3. (a) Lygo, B.; Wainwright, P. G. Tetrahedron Lett. 1997,
38, 8595; (b) Lygo, B.; Crosby, J.; Peterson, J. A. Tetra-
hedron Lett. 1999, 40, 1385; (c) Lygo, B. Tetrahedron Lett.
1999, 40, 1389; (d) Lygo, B.; Crosby, J.; Peterson, J. A.
Tetrahedron Lett. 1999, 40, 8671.
except 6a (65%). The alkylated imines 6 could be
further transformed to the corresponding a-amino acids
by acidic hydrolysis via the known procedure.2
It is thought that the high enantioselectivity of 3 is
attributed to the steric hindrance of the counter Cin-
chona unit (CD+) located near the B site as shown in
Fig. 2. Because the direction B is blocked by those two
meta-substituted Cinchona units in 3, the E-enolate of
N-(diphenylmethylene)glycine tert-butyl ester 5 forms
an ion-pair with 3 from the less hindered direction A.
Then, as the re-face of enolate can be effectively
blocked by the formation of the ion-pair, alkyl halide
can approach only the si-face of E-enolate to give the
S-form of 6. The high enantioselectivities indicate that
the trimeric catalyst 3 is a very efficient Cinchona type
phase-transfer catalyst for the synthesis of natural and
unnatural a-amino acids.
In conclusion, we prepared the trimeric Cinchona alka-
loid catalyst 3. The high enantioselective catalytic
efficiency (90–97% ee) and the easy preparation (92% in
two steps) could make 3 a practical phase-transfer
catalyst for the enantioselective synthesis of a-amino
acids.9 The applications of 3 to other asymmetric cata-
lytic reactions are currently being investigated.
General procedure for enantioselective catalytic alkyla-
tion of N-(diphenylmethylene)glycine tert-butyl ester 5
under phase-transfer conditions: To a mixture of N-
(diphenylmethylene)glycine tert-butyl ester 5 (50 mg,
0.17 mmol) and catalyst 3 (8 mg, 0.0085 mmol) in
toluene/chloroform (volume ratio=7:3, 0.75 mL) was
added alkyl halide (0.85 mmol). The reaction mixture
was then cooled (−20°C), 50% aqueous KOH (0.25 mL)
was added, and the reaction mixture was stirred at
−20°C until the starting material had been consumed.
The suspension was diluted with ether (20 mL), washed
with water (2×5 mL), dried over MgSO4, filtered and
concentrated in vacuo. Purification of the residue by
flash column chromatography on silica gel (hex-
ane:EtOAc=50:1) afforded the desired product 6a–j.
The enantioselectivities were determined by chiral
HPLC analysis (DAICEL Chiralcel OD, hexane/2-
propanol, flow rate=0.5 or 1.0 mL/min, 23°C, u=254
nm) The absolute configuration was determined by
comparison of the HPLC retention time with the
authentic sample synthesized by the reported
4. (a) Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc.
1997, 119, 12414; (b) Corey, E. J.; Noe, M. C.; Xu, F.
Tetrahedron Lett. 1998, 39, 5347; (c) Corey, E. J.; Bo, Y.;
Busch-Peterson, J. J. Am. Chem. Soc. 1998, 120, 13000.
5. (a) Ooi, T.; Kaneda, M.; Maruoka, K. J. Am. Chem. Soc.
1999, 121, 6519; (b) Ooi, T.; Takeuchi, M.; Kaneda, M.;
Maruoka, K. J. Am. Chem. Soc. 2000, 122, 5228.
6. Spino, C.; Clouston, L. L.; Berg, D. J. Can. J. Chem. 1997,
75, 1047.
7. Baba, N.; Oda, J.; Kawaguchi, M. Agric. Biol. Chem.
1986, 50, 3113.
8. Spectral data for catalyst 3: mp 201°C (decomp.); [h]D23
−128 (c 0.83, CHCl3); IR (KBr) 3437, 2922 cm−1; 1H NMR
(400 MHz, DMSO-d6) l 9.04 (d, J=4.4 Hz, 3H), 8.48 (s,
3H), 8.41 (d, J=8.3 Hz, 3H), 8.16 (d, J=8.3 Hz, 3H),
7.88–7.92 (m, 3H), 7.81–7.85 (m, 3H), 7.73 (d, J=4.4 Hz,
3H), 6.59 (s, 3H), 6.17–6.27 (m, 3H), 5.67–5.78 (m, 3H),
5.50 (d, J=17.2 Hz, 3H), 5.42–5.43 (m, 3H), 5.33–5.38 (m,
6H), 5.14–5.18 (m, 3H), 4.96 (d, J=10.5 Hz, 3H),
procedure.2–4
.