lower reactivity of disubstituted versus monosubstituted ketenes.22
Lack of reactivity of the imidazolide of cyanoacetic acid can
be attributed to the lower stability of the corresponding ketene,23
which can result in its very low equilibrium concentration in
the reaction mixture.
solid, mp 156-157 °C, 96%; IR (CDCl3) 3019, 1764, 1215, 757
1
cm-1; H NMR (300 MHz) 4.36 (s, 1H), 5.45 (s, 1H), 6.97-7.80
(m, 15H); 13C NMR (100.62 MHz) 56.02, 77.5, 117.2, 124.9, 125.9,
128.7, 129.1, 129.2, 129.3, 134.6, 134.6, 136.5, 137.6, 155.5. Anal.
Calcd for C21H17NO3S: C, 69.40, H, 4.71, N, 3.85. Found: C,
69.00, H, 4.69, N, 3.80.
Attempts to conduct similar [2 + 2] cycloadditions using
carboxylic acids of type 1 and substituted alkenes such as
ethoxyethylene, cyclopentadiene, or 2,3-dihydrofurane did not
provide any trace of the corresponding cyclobutanes. Similarly,
no cycloaddition was observed with substituted alkynes such
as phenylacetylene. Reactions with other imines such as
N-propylidene-2-phenylethylamine and ethyl N-benzylideneg-
lycinate did not provide â-lactams, most probably because of
the low stability of the imines in the presence of imidazole,
which is an unavoidable component of the reaction mixture.
In conclusion, we have demonstrated that N-acylimidazoles
possessing an electron-withdrawing group at the R position are
capable of producing â-lactams in high yield. The observed
results are compatible with a reaction mechanism involving
reversible generation of low concentrations of the corresponding
ketenes followed by their trapping with substituted imines.
trans-3-Diethoxyphosphoryl-1,4-diphenyl-azetidin-2-one (4d).6a
Pale yellow crystals, mp 81-83 °C, 99%; IR (CDCl3) 3018, 1756,
1215, 757 cm-1; 1H NMR (300 MHz) 1.31 (dt, J1 ) 6.9 Hz, J2 )
5.4 Hz, 6H), 3.50 (dd, J1 ) 15.4 Hz, J2 ) 2.9 Hz, 1H), 4.19 (dq,
J1 ) 7.7 Hz, J2 ) 7.3 Hz, 4H), 5.18 (dd, J1 ) 15.4 Hz, J2 ) 2.9
Hz, 1H), 7.03-7.39 (m, 10H); 13C NMR (100.62 MHz) 16.1, 16.2,
55.5, 55.5, 56.2, 57.7, 62.5, 62.6, 62.8, 62.9, 116.7, 124.0, 125.6,
128.7, 128.8, 129.0, 136.2, 136.3, 137.0, 137.0, 158.6, 158.7. Anal.
Calcd for C19H22NO4P: C, 63.50, H, 6.17, N, 3.90. Found: C,
63.21, H, 6.12, N, 3.58.
trans-3-Diethoxyphosphoryl-1-phenyl-4-(4-bromophenyl)aze-
tidin-2-one (4e). White crystals, mp 75-76 °C, 98%; IR (CDCl3)
1
3018, 1758, 1215, 754 cm-1; H NMR (300 MHz) 1.28 (dt, J1 )
4.4 Hz, J2 ) 4.0 Hz, 6H), 3.44 (dd, J1 ) 15.8 Hz, J2 ) 2.9 Hz,
1H), 4.15 (dq, J1 ) 7.7 Hz, J2 ) 7.3 Hz, 4H), 5.13 (dd, J1 ) 15.8
Hz, J2 ) 2.9 Hz, 1H), 6.97-7.30 (m, 9H); 13C NMR (100.62 MHz)
16.3, 16.4, 55.1, 55.1, 56.1, 58.1, 62.7, 62.8, 63.1, 63.2, 116.8,
124.4, 129.1, 129.3, 134.7, 134.9, 135.0, 136.9, 137.0, 158.6, 158.7;
HRMS calcd for C19H21BrNO4PNa+ 460.0284, found 460.0268.
Experimental Section
trans-3-Diethoxyphosphoryl-1-phenyl-4-(4-cyanophenyl)aze-
tidin-2-one (4f). Pale yellow crystals, mp 83-84 °C, 94%; IR
General Procedure for Preparation of â-Lactams (4a-g). A
solution of acid of type 1 (1 mmol) and CDI (178 mg, 1.10 mmol)
in dichloromethane (1 mL) was stirred at 25 °C for 1 h. To the
reaction mixture was added 1.0 mL of a corresponding imine in
solution (1 M solution, CH2Cl2). The reaction mixture was stirred
for 1 h, filtered through Celite, and evaporated. The residue was
purified by flash chromatography (neat chloroform) to afford title
compounds.
1
(CDCl3) 3019, 2400, 2233, 1761, 1215, 754 cm-1; H NMR (300
MHz) 1.28 (dt, J1 ) 6.9 Hz, J2 ) 2.2 Hz, 6H), 3.44 (dd, J1 ) 15.8
Hz, J2 ) 2.5 Hz, 1H), 4.15 (dq, J1 ) 7.7 Hz, J2 ) 7.3 Hz, 4H),
5.21 (dd, J1 ) 15.8 Hz, J2 ) 2.5 Hz, 1H), 7.01-7.24 (m, 5H),
7.43 (d, J ) 8.0 Hz, 2H), 7.62 (d, J ) 8.0 Hz, 2H); 13C NMR
(100.62 MHz) 16.4, 16.5, 55.27, 55.19, 56.4, 57.8, 63.0, 63.1, 63.4,
63.5, 113.0, 116.8, 118.1, 124.8, 126.7, 129.3, 133.2, 136.9, 136.9,
142.0, 142.0, 158.3, 158.4; HRMS calcd for C20H21N2O4PH+
385.1313, found 385.1317.
trans-3-Ethoxycarbonyl-1,4-diphenyl-azetidin-2-one (4a).10a
Colorless oil, 98%; IR (CDCl3) 3019, 1762, 1731, 1215, 757 cm-1
;
1H NMR (300 MHz) 1.23 (t, J ) 7.0 Hz, 3H), 3.88 (d, J ) 2.4 Hz,
1H), 4.19 (q, J ) 7.3 Hz, 2H), 5.25 (d, J ) 2.4 Hz, 1H), 6.95-
7.30 (m, 10H); 13C NMR (100.62 MHz) 14.15, 57.25, 62.12, 63.58,
117.18, 124.41, 126.20, 127.08, 129.05, 129.12, 136.35, 137.20,
1259.27, 166.30.
trans-3-Diethoxyphosphoryl-1-phenyl-4-(4-chlorophenyl)aze-
tidin-2-one (4g). White crystals, mp 93-94 °C, 98%; IR (CDCl3)
1
3018, 1758, 1215, 754 cm-1; H NMR (300 MHz) 1.28 (dt, J1 )
4.4 Hz, J2 ) 4.4 Hz, 6H), 3.44 (dd, J1 ) 15.8 Hz, J2 ) 2.9 Hz,
1H), 4.15 (dq, J1 ) 7.7 Hz, J2 ) 7.3 Hz, 4H), 5.13 (dd, J1 ) 15.8
Hz, J2 ) 2.9 Hz, 1H), 6.98-7.30 (m, 9H); 13C NMR (100.62 MHz)
16.36, 16.44, 55.21, 55.23, 56.1, 58.1, 62.8, 62.9, 63.2, 63.3, 116.9,
122.9, 124.5, 127.5, 129.1, 132.5, 135.7, 137.00, 137.03, 158.6,
158.7. Anal. Calcd for C19H21ClNO4P: C, 57.95, H, 5.37, N, 3.56.
Found: C, 57.66, H, 5.46, N, 3.43.
trans-3-Benzenesulfinyl-1,4-diphenyl-azetidin-2-ones (4b). White
amorphous solid mixture of diastereomers in 2.5:1 ratio, mp 140-
141 °C (major isomer), 97%; IR (CDCl3) 3018, 1757, 1500, 1215,
1
757 cm-1; H NMR (300 MHz) 4.08 (d, J ) 2.4 Hz, 1H, minor
stereoisomer), 4.27 (d, J ) 2.4 Hz, 1H, major stereoisomer), 5.28
(d, J ) 2.4 Hz, 1H, major stereoisomer), 5.41 (d, J ) 2.4 Hz, 1H,
minor stereoisomer), 6.82-7.77 (m, 15H [major] + 15H [minor]);
13C NMR (100.62 MHz) 56.2, 76.4, 117.1, 124.5, 124.9, 126.2,
128.9, 129.1, 129.1, 129.3, 131.9, 135.5, 136.5, 139.0, 157.3. Anal.
Calcd for C21H17NO2S: C, 72.60, H, 4.93, N, 4.03. Found: C,
72.35, H, 5.05, N, 4.00.
Acknowledgment. This research was supported by the Israel
Science Foundation.
trans-3-Benzenesulfonyl-1,4-diphenyl-azetidin-2-one (4c). White
Supporting Information Available: Complete experimental
1
details and copies of H and 13C NMR spectra of products 4a-g.
This material is available free of charge via the Internet at
(22) Allen, A. D.; Kresge; A. J.; Schepp, N. P.; Tidwell, T. T. Can. J.
Chem. 1987, 65, 1719-1723.
(23) McAllister, M. A.; Tidwell, T. T. J. Org. Chem. 1994, 59, 4506-
4515.
JO0607010
5806 J. Org. Chem., Vol. 71, No. 15, 2006