62
H. Syska et al. / Journal of Organometallic Chemistry 703 (2012) 56e62
[14] S. Narayan, J. Muldoon, M.G. Finn, V.V. Fokin, H.C. Kolb, K.B. Sharpless, Angew.
Chem. Int. 44 (2005) 3275.
[15] J.E. Klijn, J. Engberts, Nature 435 (2005) 746.
[16] H.B. Zhang, L. Liu, Y.J. Chen, D. Wang, C.J. Li, Eur. J. Org. Chem. (2006) 869.
[17] M.M. Heravi, F. Derikvand, M. Haghighi, K. Bakhtiari, Lett. Org. Chem. 3
(2006) 297.
[18] W.A. Herrmann, M. Elison, J. Fischer, C. Köcher, G.R.J. Artus, Angew. Chem. Int.
34 (1995) 2371.
complex 5. An explanation might be the influence of the steric bulk
of the carbene ligand on directing the reaction. Particularly in
octahedral intermediates the steric bulk of the carbene ligand could
be decisive for the selectivity of the catalyst. Using the same cata-
lytic reaction condition, the isolated complex 6 described in this
work shows generally higher activities compared to the in situ
formed compound 2 (see Table 1). A possible reason for this might
be the higher purity of the isolated (and purified) complex prior to
catalytic application. However, the sampling size (with respect to
the number of compounds examined) and the non-uniformity of
the catalyst compounds (i. e. different set of ligands) prohibits
a more detailed interpretation of the obtained data.
[19] L. Benhamou, E. Chardon, G. Lavigne, S. BellemineLaponnaz, V. César, Chem.
Rev. 111 (2011) 2705.
[20] W.A. Herrmann, Angew. Chem. Int. 41 (2002) 1290.
[21] F.E. Hahn, M.C. Jahnke, Angew. Chem. Int. 47 (2008) 3122.
[22] S. DiezeGonzález, N. Marion, S.P. Nolan, Chem. Rev. 109 (2009) 3612.
[23] O. Schuster, L. Yang, H.G. Raubeneimer, M. Albrecht, Chem. Rev. 109 (2009)
3445.
[24] G.C. Vougiokalakis, R.H. Grubbs, Chem. Rev. 110 (2009) 1746.
[25] J.C.Y. Lin, R.T.W. Huang, C.S. Lee, A. Bhattacharyya, W.S. Hwang, IJ.B. Lin, Chem.
Rev. 109 (2009) 3561.
With respect to byproducts, beside 1-phenylethanol as the main
product, the hydrogenation of acetophenone also produces cyclo-
hexylethanol. The formation of the latter compound has been re-
ported in the literature [62e66]. Cheng et al. mention that product
[26] B. Cornils, W.A. Herrmann, J. Catal. 216 (2003) 23.
[27] T.N. Patil, Angew. Chem. Int. 49 (2011) 1759.
[28] W. Kirmse, Angew. Chem. Int. 49 (2010) 8798.
[29] W.A. Herrmann, K. Öfele, D. von Preysing, S.K. Schneider, J. Organomet. Chem.
687 (2003) 229.
formation
follows
the
route:
acetophenone
/
1-
phenyethanol / cyclohexylethanol, with the reaction selectivity
towards 1-phenylethanol being increased with decreasing forma-
tion of cyclohexylethanol as its follow-up product [67].
[30] V. César, S. BellemineLaponnaz, L.H. Gade, Chem. Soc. Rev. 33 (2004) 619.
[31] K.J. Cavell, D.S. McGuinnes, Coord. Chem. Rev. 248 (2004) 671.
[32] E. Peris, R.H. Crabtree, Coord. Chem. Rev. 248 (2004) 2239.
[33] C.M. Crudden, D.P. Allen, Coord. Chem. Rev. 248 (2004) 2247.
[34] I.J.B. Lin, C.S. Vasan, Comments Inorg. Chem. 25 (2004) 75.
[35] T.J. Katz, Angew. Chem. Int. 44 (2005) 3010.
4. Conclusions
[36] W.A. Herrmann, T. Weskamp, V.P.W. Böhm, Adv. Organomet. Chem. 48
(2001) 1.
Four new water-soluble complexes containing Ir, Rh, Ru as
central atoms and an NHC ligand have been synthesized. For the
hydrogenation of acetophenone in water under 40 bar hydrogen
pressure, acceptable to good catalytic activities in basic media and
in absence of phase-transfer agent are observed. The NHC-based
catalysts contain a hydrophilic functionality allowing a homoge-
neously catalyzed hydrogenation reaction in water.
[37] J.C. Garrison, W.J. Youngs, Chem. Rev. 105 (2005) 3978.
[38] H.W. Wanzlick, E. Schikora, Chem. Ber 94 (1961) 2389.
[39] H. K Schönherr, H.W. Wanzlick, L. Ann, Chem. Ber 731 (1970) 176.
[40] W.A. Herrmann, C. Köcher, Angew. Chem. 109 (1997) 2256.
[41] X. Hu, I. Castro-Rodriguez, K. Olsen, K. Meyer, Organometallics 23 (2004) 755.
[42] A.T. Termaten, M. Schakel, A.W. Ehelers, M. Lutz, A.L. Spek, K. Lammertsma,
Chem. Eur. J. 9 (2003) 3577.
[43] J.C. Green, R.G. Scurr, P.L. Arnold, G.N. Cloke, Chem. Commun. (1997) 1963.
[44] W.A. Herrmann, C. Köcher, L.J. Gooßen, G.R.J. Artus, Chem. Eur. J. 2 (1996)
1627.
[45] W.A. Herrmann, L.J Gooßen, C. Köcher, G.R.J. Artus, Angew. Chem. Int. 35
(1996) 2805.
Acknowledgments
[46] W.A. Herrmann, L.J. Gooßen, G.R.J. Artus, C. Köcher, Organometallics 16 (1997)
2472.
[47] M.A.N. Virboul, M. Lutz, M.A. Siegler, A.L. Spek, G. van Koten, R. Gebbink,
Chem. Eur. J. 15 (2009) 9981.
[48] Y. Nagai, T. Kochi, K. Nozaki, Organometallics 28 (2009) 6131.
[49] H. Turkmen, R. Can, B. Cetinkaya, Dalton Trans. (2009) 7039.
[50] C. Fleckenstein, S. Roy, S. Leuthausser, H. Plenio, Chem. Commun. (2007) 2870.
[51] G. Papini, M. Pellei, G.G. Lobbia, A. Burini, C. Santini, Dalton Trans. (2009)
6985.
This work was supported by the Elitenetzwerk Bayern (PhD
grant for HS). Dr. Karl Öfele, Dr. Mirza Cokoja, Amylia Abdul Ghani,
Kevser Mantas Öktem are acknowledged for helpful discussions
and Fawzi Belmedjahed for technical support.
References
[52] L.R. Moore, S.M. Cooks, M.S. Anderson, H.-J. Schanz, K.H. Shaughnessy,
Organometallics 25 (2006) 5151.
[1] K.H. Shaughnessy, Chem. Rev. 109 (2009) 643.
[2] B. Cornils, W.A. Herrmann, Aqueous-Phase Organometallic Catalysis, Concepts
and Application, second ed.. Wiley-VCH, Weinheim, Germany, 1998.
[3] C.J. Li, L. Chen, Chem. Soc. Rev. 35 (2006) 68.
[4] S. Kobayashi, K. Manabe, Acc. Chem. Res. 35 (2002) 209.
[5] C.J. Li, Chem. Rev. 105 (2005) 3095.
[6] D. Vione, V. Maurino, C. Minero, E. Pelizzetti, M.A.J. Harrison, R.I. Olariu,
C. Arsene, Chem. Soc. Rev. 35 (2006) 441.
[7] R.N. Butler, A.G. Coyne, Chem. Rev. 110 (2010) 6302.
[8] A. Azua, S. Sanz, E. Peris, Chem. Eur. J. 17 (2011) 684.
[9] N. Kania, N. Gokulakrishnan, B. Léger, S. Fourmentin, E. Monflier, A. Ponchel,
J. Catal. 278 (2011) 208.
[10] L.Y. Li, J.Y. Wang, C.S. Zhou, R.H. Wang, M.C. Hong, Green. Chem. 13 (2011)
2071.
[11] S. Otto, J.B.F.N. Engberts, Pure App. Chem 72 (2000) 1365.
[12] P.N. Rylander, Catalytic Hydrogenation over Platinum Metals, Academic Press,
New York, 1967.
[53] S. Roy, H. Plenio, Adv. Synth. Catal. 352 (2010) 1014.
[54] H. Ohta, T. Fujiharaa, Y. Tsuji, Dalton Trans. (2008) 379.
[55] A. Azua, S. Sanz, E. Peris, Organometallics 29 (2010) 3661.
[56] C.C. Yang, P.S. Lin, F.C. Liu, I.J.B. Lin, Organometallics 29 (2010) 5959.
[57] F. Godoy, C. Segarra, M. Poyatos, E. Peris, Organometallics 30 (2011) 684.
[58] A. Almássy, C.E. Nagy, A.C. Bényei, F. Joó, Organometallics 29 (2010) 2484.
[59] V. Pénicaud, C. Maillet, P. Janvier, P. Pipelier, B. Bujoli, Eur. J. Org. Chem. (1999)
1745.
[60] W.A. Herrmann, M. Elison, J. Fischer, C. Köcher. (Hoechst AG) US Patent
5,663,451.
[61] Q. Jiang, Y. Jiang, D. Xiao, P. Cao, X. Zhang, Angew. Chem. Int. 37 (1998) 1100.
[62] S.D. Lin, D.K. Sanders, M.A. Vannice, Appl. Catal. 113 (1994) 59.
[63] D.K. Sanders, S.D. Lin, M.A. Vannice, J. Catal. 147 (1994) 375.
[64] T. Koscielski, J.M. Bonnier, J.P. Damon, J. Masson, Appl. Catal. 49 (1989) 91.
[65] S.D. Lin, D.K. Sanders, M.A. Vannice, J. Catal. 147 (1994) 370.
[66] J. Masson, S. Vidal, P. Cividino, P. Fouilloux, J. Court, Appl. Catal. 99 (1993) 147.
[67] C.-S. Chen, H.-W. Chen, W.-H. Cheng, Appl. Catal. 248 (2003) 117.
[13] U.M. Lindstrom, F. Andersson, Angew. Chem. Int. 45 (2006) 548.