T. K. Chakraborty et al. / Tetrahedron Letters 47 (2006) 4631–4634
4633
2
1
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
1
1
H
H
2
OMe
Boc-HN
N
H
O
2
9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0
Figure 2. NOE correlation and NOESY spectrum for 9.
ton-Smith, G.; Lombart, H.-G.; Lubell, W. D.
Tetrahedron 1997, 53, 12789–12854; (h) Giannis, A.;
Kolter, T. Angew. Chem., Int. Ed. Engl. 1993, 32, 1244–
1267.
For compound 9, the two aromatic protons in the pyr-
role ring show strong NOE correlations in the NOESY
spectrum (Fig. 2). Further, observation of a NOE
cross peak between H(4)–BocNH, in addition to con-
firming the assignments for H(3) and H(4) at
d = 6.70 ppm and d = 5.78 ppm, respectively, provides
emphatic evidence for their vicinal disposition, and
confirms 9 as N-Boc-5-amino-pyrrole-2-carboxylic acid
methyl ester.
2. (a) Chakraborty, T. K.; Krishna Mohan, B.; Kiran
Kumar, S.; Kunwar, A. C. Tetrahedron Lett. 2002, 43,
2589–2592; (b) Chakraborty, T. K.; Mohan, B. K.;
Kumar, S. K.; Kunwar, A. C. Tetrahedron Lett. 2003,
44, 471–473; (c) Bonauer, C.; Zabel, M.; Ko¨nig, B. Org.
Lett. 2004, 6, 1349–1352; (d) Bonauer, C.; Ko¨nig, B.
Synthesis 2005, 2367–2372; (e) Kruppa, M.; Bonauer, C.;
´
Michlova, V.; Ko¨nig, B. J. Org. Chem. 2005, 70, 5305–
5308.
In addition, compound 8 was transformed into its ethyl
ester 10 by a base-catalyzed trans-esterification process.
The spectral data of 10 matched exactly those of the
compound reported by Dervan et al.11 These findings
imply that the reported structure of the compound pre-
pared by Dervan et al. is likely to be different. Based on
the NMR studies described here, we conclude that the
amino-substituted pyrrole-2-carboxylic acid reported
earlier4 was actually the 4-amino isomer.
3. Chakraborty, T. K.; Mohan, B. K.; Gnanamani, M.;
Maiti, S. Tetrahedron Lett. 2005, 46, 647–651.
4. Marques, M. A.; Doss, R. M.; Urbach, A. R.; Dervan, P.
B. Helv. Chim. Acta 2002, 85, 4485–4517.
5. Schmuck, C.; Dudaczek, J. Tetrahedron Lett. 2005, 46,
7101–7105.
6. Khan, M. K. A.; Morgan, K. J.; Morrey, O. P. Tetrahe-
dron 1966, 22, 2095–2105.
7. Urbach, A. R.; Szewczyk, J. W.; White, S.; Turner, J. M.;
Baird, E. E.; Dervan, P. B. J. Am. Chem. Soc. 1999, 121,
11621–11629.
Acknowledgements
8. Selected physical data of 8: white solid; mp 185–186 °C;
1H NMR (500 MHz, DMSO-d6): d 11.65 (br, 1H, pyrr-
oleNH), 9.09 (br, 1H, BocNH), 6.96 (dd, J = 2.6, 1.8 Hz,
1H, 5-H), 6.60 (dd, J = 2.6, 1.8 Hz, 1H, 3-H), 3.73 (s, 3H,
CO2CH3), 1.44 (s, 9H, Boc); 13C NMR (150 MHz,
DMSO-d6): d 160.8, 152.8, 125.1, 119.0, 112.7, 105.5,
78.5, 51.1, 28.2; MS (FAB): m/z (%) 240 (50) [M]+.
Selected physical data of 9: white solid; mp 118 °C; 1H
NMR (500 MHz, DMSO-d6): d 10.63 (br, 1H, pyrro-
leNH), 9.57 (br, 1H, BocNH), 6.70 (dd, J = 4.0, 2.3 Hz,
1H, 3-H), 5.78 (dd, J = 4.0, 2.3 Hz, 1H, 4-H), 3.71 (s, 3H,
CO2CH3), 1.45 (s, 9H, Boc); 13C NMR (150 MHz,
DMSO-d6): d 160.4, 152.5, 133.7, 115.8, 115.2, 97.0,
80.2, 50.9, 28.0; MS (FAB): m/z (%) 241 (48) [M+H]+.
9. Pretsch, E.; Seibl, J.; Simon, W.; Clerc, T. In Tables of
Spectral Data for Structure Determination of Organic
Compounds; Springer: Berlin, 1981.
The authors wish to thank CSIR, New Delhi, for re-
search fellowships (S.P.U., S.R., B.K.M. and S.K.D.).
References and notes
1. For references see: (a) The Murray Goodman Memorial
Issue. In Peptide Science; Taulane, J. P., Deber, C. M.,
Eds.; Wiley InterScience, 2005; Vol. 80, pp 59–391; (b)
Synthesis of peptides and peptidomimetics. In Houben-
Weyl Methods of Organic Chemistry; Goodman, M., Felix,
A., Moroder, L., Toniolo, C., Eds.; Thieme: Stuttgart,
2004; 22b; (c) Souers, A. J.; Ellman, J. A. Tetrahedron
2001, 57, 7431–7448; (d) Tetrahedron 2000, 56, 9725–
9841; (e) Bioorg. Med. Chem. 1999, 7, 1–192; (f) Hruby, V.
J.; Li, G.; Haskell-Luevano, C.; Shenderovich, M. Bio-
polymers 1997, 43, 219–248; (g) Hanessian, S.; McNaugh-
10. Weigert, F. J.; Roberts, J. D. J. Am. Chem. Soc. 1968, 90,
3543–3549.