Design, Synthesis and Optical Response of Pyridine-Cored
Letters in Organic Chemistry, 2010, Vol. 7, No. 3
207
C.N.
metallodendrimers. Chem. Rev. 1999, 99, 1689.
(a) van Hutten, P.F.; Wildeman, J.; Meetsma, A.; Hadziioannou, G.
Molecular packing in unsubstituted semiconducting
Suprasupermolecules
with
novel
properties:
[11]
[12]
[13]
(a) Guldi, D.M.; Swartz, A.; Luo, C.; Gómez, R.; Segura, J.L.;
Martín, N. Rigid dendritic donor-acceptor ensembles: control over
energy and electron transduction. J. Am. Chem. Soc., 2002, 124,
10875; (b) Kwon, T.W.; Alam, M.M.; Jenekhe, S.A. n-Type
conjugated dendrimers: convergent synthesis, photophysics,
electroluminescence, and use as electron-transport materials for
light-emitting diodes. Chem. Mater., 2004, 16, 4657.
(a)Yamaguchi, Y.; Kobayashi, S.; Wakamiya, T.; Matsubara, Y.;
Yoshida, Z. Banana-shaped oligo(aryleneethynylene)s: synthesis
and light-emitting characteristics. Angew. Chem. Int. Ed. Engl.,
2005, 44, 7040; (b) Achelle, S.; Nouira, I.; Pfaffinger, B.;
Ramondenc, Y.; Plé, N.; Rodríguez-López, J. V-Shaped 4,6-
bis(arylvinyl)pyrimidine oligomers: synthesis and optical
properties. J. Org. Chem., 2009, 74, 3711.
(a) Deb, S.K.; Maddux, T.M.; Yu, L. A simple orthogonal approach
to poly(phenylenevinylene) dendrimers. J. Am. Chem. Soc., 1997,
119, 9079; (b) Meier, H.; Lehmann, M. Stilbenoid dendrimers.
Angew. Chem. Int. Ed. Engl., 1998, 37, 643; (c) Meier, H.;
Lehmann, M.; Kolb, U. Stilbenoid dendrimers. Chem. Eur. J.,
2000, 6, 2462; (d) Díez-Barra, E.; García-Martínez, J.C.;
Rodríguez-López, J.; Gómez, R.; Segura, J.L.; Martín, N. Synthesis
of new 1,1'-binaphthyl-based chiral phenylenevinylene dendrimers.
Org. Lett., 2000, 2, 3651; (e) Segura, J.L.; Gómez, R.; Martín, N.;
Guldi, D.M. Synthesis of photo- and electroactive stilbenoid
dendrimers carrying dibutylamino peripheral groups. Org. Lett.,
2001, 3, 2645.
Shujun, W.; Oldham W.J.; Jr.; Hudack, R.A.; Jr.; Bazan G.C.
Synthesis, morphology, and optical properties of tetrahedral
oligo(phenylenevinylene) materials. J. Am. Chem. Soc., 2000, 122,
5695.
Jeffery, T. Advances in Metal-Organic Chemistry; Liebeskind, L.
S., Ed.; JAI Press: Greenwich, CT, 1996; Vol. 5, pp. 153-260.
Dibromination of 7 followed by protodiazoniation can also be
carried out via a literature procedure (ref. 8c).
Typical experimental procedure for preparation of V-shaped
pyridine cored stilbenoid dendrimers: A mixture of dried KOAc
(124 mg, 1.266 mmol), n-Bu4NBr (299 mg, 19.4 mmol) in DMF (6
mL) was stirred for 15 min in a double necked round-bottomed
flask in argon atmosphere at room temperature. To the reaction
mixture 11 (100 mg, 0.422 mmol), PPh3 (22 mg, 0.084 mmol), 4-
tert-butylstyrene (169 mg, 1.055 mmol) were added simultaneously
and stirred for another 15 min. Catalytic amount of Pd(OAc)2 was
[2]
phenylenevinylene oligomer and polymer. J. Am. Chem. Soc.,
1999, 121, 5910; (b) Goodson, T., III; Li, W.; Gharavi, A.; Yu, L.
Oligophenylenevinylenes for light-emitting diodes. Adv. Mater.,
1997, 9, 639; (c) Meier, H. The photochemistry of stilbenoid
compounds and their role in materials technology. Angew. Chem.
Int. Ed. Engl., 1992, 31, 1399; (d) Kraft, A.; Grimsdale, A.C.;
Holmes, A.B. Electroluminescent conjugated polymers - seeing
polymers in a new light. Angew. Chem. Int. Ed. Engl., 1998, 37,
402; (e) Mitschke, U.; Bäurele, P. The electroluminescence of
organic materials. J. Mater. Chem., 2000, 10, 1471; (f) Segura,
J.L.; Martín, N. Functionalized oligoarylenes as building blocks for
new organic materials. J. Mater. Chem., 2000, 10, 2403.
(a) Noma, N.; Tsuzuki, T.; Shirota, Y. ꢀ-Thiophene octamer as a
new class of photo-active material for photoelectrical conversion.
Adv. Mater., 1995, 7, 647; (b) Eckert, J.-F.; Nicoud, J.-F.;
Nierengarten, J.-F.; Liu, S.-G.; Echegoyen, L.; Barigelletti, F.;
Armaroli, N.; Ouali, L.; Krasnikov, V.; Hadziioannou, G.
Fullerene-oligophenylenevinylene hybrids: synthesis, electronic
properties, and incorporation in photovoltaic devices. J. Am. Chem.
Soc., 2000, 122, 7467.
Schön, J.H.; Dodabalapur, A.; Kloc, C.; Batlogg, B. A light-
emitting field-effect transistor. Science, 2000, 290, 963.
Martin, R.E.; Diederich, F. Linear monodisperse ꢁ-conjugated
oligomers: model compounds for polymers and more. Angew.
Chem. Int. Ed. Engl., 1999, 38, 1350.
(a) Albota, M.; Beljonne, D.; Brédas, J.-L.; Ehrlich, J.E.; Fu, J.-Y.;
Heikal, A.A.; Hess, S.E.; Kogej, T.; Levin, M.D.; Marder, S.R.;
McCord-Maughon, D.; Perry, J.W.; Röckel, H.; Rumi, M.;
Subramaniam, G.; Webb, W.W.; Wu, X.-L.; Xu, C. Design of
organic molecules with large two-photon absorption cross sections.
Science, 1998, 281, 1653; (b) Marder, S.R.; Beratan, D.N.; Cheng,
L-T. Approaches for optimizing the first electronic
hyperpolarizability of conjugated organic molecules. Science,
1991, 252, 103.
[3]
[4]
[5]
[14]
[6]
[15]
[16]
[17]
[7]
[8]
Scherf, U. Oligo- and polyarylenes, oligo- and polyarylen-
evinylenes. Top. Curr. Chem., 1999, 201, 163.
(a) García-Martínez, J.C.; Díez-Barra, E.; Rodríguez-López, J.
Conjugated dendrimers with poly(Phenylenevinylene) and
poly(Phenyleneethynylene) scaffolds. Curr. Org. Synth., 2008, 5,
267; (b) Cano-Marín, A.R.; Díez-Barraj, E.; Rodríguez-López, J.
Synthesis, characterization and optical response of polyene-cored
stilbenoid dendrimers. Tetrahedron, 2005, 61, 395; (c) Sengupta,
S., Sadhukhan S.K.; Singh, R.S.; Pal, N. Synthesis of dendritic
stilbenoid compounds: Heck reactions for the periphery and the
core. Tetrahedron Lett., 2002, 43, 1117.
Lupton, J.M.; Samuel, I.D.W.; Beavington, R.; Burn, P.L.; Bässler,
H. Control of charge transport and intermolecular interaction in
organic light-emitting diodes by dendrimer generation. Adv.
Mater., 2001, 13, 258.
added and heated for 24 h at 90 °C. The mixture was cooled to
room temperature and extracted with hexane and ether mixture
(1:1) (30 mL). The organic layer was washed with water (3x5 mL)
and brine (5 mL), and dried over anhydrous Na2SO4. Solvent was
removed in a rotary evaporator and the crude product was purified
using column chromatography (silica gel/ethyl acetate:petroleum
ether 1:99) to yield the compound 12 (76 mg, 45 %) as white
1
[9]
solids. Data for 12: Mp 172 °C; H NMR (500 MHz, CDCl3): ꢀ
7.67 (d, 2H, J = 16.0 Hz), 7.64 (t, 1H, J = 7.5 Hz), 7.56 (d, 4H, J =
8.3 Hz), 7.41 (d, 4H, J = 8.3 Hz), 7.27 (d, 2H, J = 7.5 Hz), 7.19 (d,
2H, J = 16.0 Hz), 1.35 (s, 18H); 13C NMR (125 MHz, CDCl3): ꢀ
155.6, 151.4, 136.7, 134.0, 132.6, 127.6, 126.9, 125.6, 120.0, 34.7,
31.2; MALDI-TOF MS: m/e : 396.0 (MH+).
[10]
(a) Pillow, J.N.G.; Halim, M.; Lupton, J.M.; Burn, P.L.; Samuel,
I.D.W.
A facile iterative procedure for the preparation of
[18]
[19]
Data for 13: 1H NMR (500 MHz, CDCl3): ꢀ 7.88 (t, 1H, J = 7.5
Hz), 7.85 (d, 2H, J = 16.0 Hz), 7.68 (s, 4H), 7.59 (br s, 2H), 7.52
(d, 8H, J = 8.3 Hz), 7.48 (d, 2H, J = 7.5 Hz), 7.43 (d, 8H, J = 8.3
Hz), 7.37 (d, 2H, J = 16.0 Hz), 7.23 (d, 4H, J = 16.0 Hz), 7.15 (d,
4H, J = 16.0 Hz), 1.35 (s, 36H); 13C NMR (75 MHz, CDCl3): ꢀ
155.4, 150.9, 138.3, 137.4, 134.4, 132.5, 129.1, 128.8, 127.5,
126.3, 125.6, 124.6, 124.2, 122.1, 120.4, 34.6, 31.3; MALDI-TOF
MS: m/e : 916.7 (MH+).
dendrimers containing luminescent cores and stilbene dendrons.
Macromolecules, 1999, 32, 5985; (b) Halim, M.; Pillow, J.N.G.;
Samuel, I.D.W.; Burn, P.L. Conjugated dendrimers for light-
emitting diodes: effect of generation. Adv. Mater., 1999, 11, 371;
(c) Ma, D.; Lupton, J.M.; Beavington, R.; Burn, P.L.; Samuel,
I.D.W. Novel heterolayer organic light-emitting diodes based on a
conjugated dendrimer. Adv. Funct. Mater., 2002, 12, 507; (d) Díez-
Barra, E.; García-Martínez, J. C.; Merino, S.; del Rey, R.;
Rodríguez-López, J.; Sánchez-Verdú, P.; Tejeda, J. Synthesis,
characterization, and optical response of dipolar and non-dipolar
poly(phenylenevinylene) dendrimers. J. Org. Chem., 2001, 66,
5664; (e) Tolosa, J.; Romero-Nieto, C.; Díez-Barra, E.; Sánchez-
Verdú, P.; Rodríguez-López, J. Control of surface functionality in
poly(phenylenevinylene) dendritic architectures. J. Org. Chem.,
2007, 72, 3847.
Data for 14: 1H NMR (300 MHz, CDCl3): ꢀ 7.86 (d, 4H, J = 8.1
Hz), 7.65 (d, 4H, J = 8.1 Hz), 7.49 (m, 5H), 7.41 (m, 6H), 7.26 (d,
4H, J = 16.2 Hz), 7.10 (d, 4H, J = 16.2 Hz), 1.34 (s, 18H);
MALDI-TOF MS: m/e : 600.0 (MH+).