Journal of the American Chemical Society
Communication
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, analytical data, supporting schemes,
and figures. Full citations for references 5, 6, 9, 11 and 17. This
material is available free of charge via the Internet at http://pubs.
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
Figure 3. Histone PTMs can detoxify K27M mutants. (A) Reduction of
Lys27Nle-dependent inhibition of PRC2 activity by PTMs in vitro. (B)
Immunoblots of whole-cell extract from lentivirus-transduced
HEK293T cells expressing the indicated HA-tagged H3.3 transgenes.
The phosphorylation mimic S28E diminishes K27M-dependent PRC2
inhibition in vivo.
∥These authors contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Lotus separations for purification of Fmoc-2-
aminoheptanoic acid, Ha-Eun Kong for help with peptide
synthesis, Dr. Lenka Bittova for providing p300, and members of
the Muir and Allis laboratories for valuable discussions. This
research was supported by the U.S. National Institutes of Health
(grants R37-GM086868 and R01 GM107047) and the STARR
foundation (grant I6-A614).
hypothesized that PRC2 inhibition may be similarly affected by
PTMs occurring at binding hotspots. To test this idea, we
synthesized peptides containing known activating PTMs within
H3. Trimethylation at Lys4 (peptide 44) reduced inhibitor
potency ∼4-fold, whereas asymmetric dimethylation at Arg26
(peptide 45)18 diminished inhibition ∼30-fold (Figures 3A, S4).
Polyacetylation of Lys27Nle inhibitor constructs (peptide 46,
acetylated on Lys residues 9, 14, 18, and 23) dramatically
impaired Prc2 inhibition, in this case over 80-fold. Notably,
K27M nucleosomes are readily acetylated by the histone
acetyltransferase p300 (Figure S4C). Finally, phosphorylation
at Ser28 (peptide 47)19 reduced the inhibitor potency ∼12-fold.
These results demonstrate that PRC2 inhibition by K27M can be
reduced through the deposition of specific histone PTMs within
the same tail, in analogy to binary switches observed in many
histone modification crosstalks.20
We were intrigued by the possibility that histone PTMs may
also be able to detoxify the K27M mutation in vivo. This
hypothesis is most easily tested for phosphoserine since this
residue can be mimicked by a Ser to Glu mutation. In vitro, the
K27Nle/S28E double mutant (peptide 48) displayed reduced
inhibitor potency compared to the K27Nle mutant (Figures 3A
and S4B). To extend these results in vivo, we transduced HEK
293T cells with lentiviruses containing wild-type histone H3.3,
K27M, S28E, or the double mutant K27M/S28E and compared
the level of K27me2 and K27me3 in the resulting cell lines
(Figures 3B and S4D). In agreement with our in vitro
measurements, the phosphoserine-mimetic S28E partially
rescued the formation of K27me2 and K27me3 modifications
that are suppressed by the presence of K27M. These results argue
that PTMs can strongly attenuate K27M-dependent loss of K27
methylation, perhaps contributing to the existence of K27me3-
rich chromatin regions in K27M-containing tumors.
REFERENCES
■
(1) Strahl, B. D.; Allis, C. D. Nature 2000, 403, 41.
(2) Ciferri, C.; Lander, G. C.; Maiolica, A.; Herzog, F.; Aebersold, R.;
Nogales, E. Elife 2012, 1, e00005.
(3) Simon, J.; Lange, C. Mutat. Res. 2008, 647, 21.
(4) Kuzmichev, A.; Nishioka, K.; Erdjument-Bromage, H.; Tempst, P.;
Reinberg, D. Genes Dev. 2002, 16, 2893.
(5) Schwartzentruber, J.; Korshunov, A.; Liu, X. Y.; Jones, D. T.; Pfaff,
E.; Jacob, K.; Sturm, D.; Fontebasso, A. M.; Quang, D. A.; Tonjes, M.;
et al. Nature 2012, 482, 226.
(6) Wu, G.; Broniscer, A.; McEachron, T. A.; Lu, C.; Paugh, B. S.;
Becksfort, J.; Qu, C.; Ding, L.; Huether, R.; Parker, M.; et al. Nat. Genet.
2012, 44, 251.
(7) Lewis, P. W.; Muller, M. M.; Koletsky, M. S.; Cordero, F.; Lin, S.;
̈
Banaszynski, L. A.; Garcia, B. A.; Muir, T. W.; Becher, O. J.; Allis, C. D.
Science 2013, 340, 857.
(8) Chan, K.-M.; Fang, D.; Gan, H.; Hashizume, R.; Yu, C.; Schroeder,
M.; Gupta, N.; Mueller, S.; James, C. D.; Jenkins, R.; Sarkaria, J.; Zhang,
Z. Genes Dev. 2013, 27, 985.
(9) Bender, S.; Tang, Y.; Lindroth, A. M.; Hovestadt, V.; Jones, D. T.;
Kool, M.; Zapatka, M.; Northcott, P. A.; Sturm, D.; Wang, W.; et al.
Cancer Cell 2013, 24, 660.
(10) Lowary, P. T.; Widom, J. J. Mol. Biol. 1998, 276, 19.
(11) Diaz, E.; Machutta, C. A.; Chen, S.; Jiang, Y.; Nixon, C.; Hofmann,
G.; Key, D.; Sweitzer, S.; Patel, M.; Wu, Z.; et al. J. Biomol. Screen. 2012,
17, 1279.
(12) Cheng, Y.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.
(13) Copeland, R. A. Reversible Inhibitors. In Enzymes; John Wiley &
Sons, Inc.: Hoboken, NJ, 2002; pp 266−304.
(14) Trievel, R. C.; Beach, B. M.; Dirk, L. M.; Houtz, R. L.; Hurley, J. H.
Cell 2002, 111, 91.
In summary, we have mapped the binding interaction between
the histone methyltransferase PRC2 and cancer-derived
H3K27M histone mutants. Potent inhibition relies on long,
hydrophobic residues to interact with the lysine binding channel
of the active site. The catalytic subunit, EZH2, recognizes the
entire H3 tail, in particular regions surrounding residue 27 and
the N-terminus. Interfering with these binding hotspots through
PTMs attenuates inhibition, which suggests that modulating
alternate chromatin modification pathways may provide a
therapeutic strategy for K27M detoxification.
(15) Margueron, R.; Reinberg, D. Nature 2011, 469, 343.
(16) Margueron, R.; Justin, N.; Ohno, K.; Sharpe, M. L.; Son, J.; Drury,
W. J., III; Voigt, P.; Martin, S. R.; Taylor, W. R.; De Marco, V.; Pirrotta,
V.; Reinberg, D.; Gamblin, S. J. Nature 2009, 461, 762.
(17) Schmitges, F.; Prusty, A.; Faty, M.; Stutzer, A.; Lingaraju, G.;
̈
Aiwazian, J.; Sack, R.; Hess, D.; Li, L.; Zhou, S.; et al. Mol. Cell 2011, 42,
330.
(18) Di Lorenzo, A.; Bedford, M. T. FEBS Lett. 2011, 585, 2024.
(19) Lau, P. N.; Cheung, P. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 2801.
(20) Fischle, W.; Wang, Y.; Allis, C. D. Nature 2003, 425, 475.
13501
dx.doi.org/10.1021/ja5060934 | J. Am. Chem. Soc. 2014, 136, 13498−13501