Please do not adjust margins
ChemComm
DOI: 10.1039/C6CC01614F
COMMUNICATION
Journal Name
2
(a) M. Teng, X. Jia, X. Chen and Y. Wei, Angew. Chem. Int. Ed.
,
of the YAM2ꢀform. While it is, unfortunately, impossible to
distinguish if the grinding process changes interꢀ or
2
012, 51, 6398–6401; (b) Z. Ma, M. Teng, Z. Wang, S. Yang and X.
Jia, Angew. Chem. Int. Ed., 2013, 52, 12268–12272; (c) Z. Ma, Z.
intramolecular arrangements of the emissive cores of
1
, one can
Wang, X. Meng, Z. Ma, Z. Xu, Y. Ma, X. Jia, Angew. Chem. Int. Ed.
2016, 55, 519–522.
,
speculate that probably a broad range of species with different
conformation is present in the two amorphous forms and that
the optical properties change on account of alterations of both
these factors. The emission spectrum of the ROLOꢀform, which
was obtained by annealing the YAM1ꢀform (Fig. 4, orange dashꢀ
dotted line), is very similar to that of ROCRꢀform, although a
small shoulder appears around 540 nm. The emission spectrum
of the ROLOꢀform obtained from YAM2ꢀform also shows the
same spectral feature (Fig. 4, yellow dashꢀdotted line). This
behavior is consistent with the results obtained from powder
XRD measurements and confirms that the annealing procedure
does not lead to the complete recovery of the wellꢀordered
3
4
A. M. Belenguer, G. I. Lampronti, D. J. Wales, J. K. M. Sanders, J.
Am. Chem. Soc., 2014, 136, 16156–16166.
(a) D. W. R. Balkenende, S. Coulibaly, S. Balog, Y. C. Simon, G. L.
Fiore and C. Weder, J. Am. Chem. Soc., 2014, 136, 10493–10498; (b)
A. P. Haehnel, Y. Sagara, Y. C. Simon and C. Weder, Top. Curr.
Chem., 2015, 369, 345–375.
5
6
(a) C. Weder, J. Mater. Chem., 2011, 21, 8235–8236; (b) C. Weder,
Nature, 2009, 459, 45–46; (c) C. Weder, in Encyclopedia of
Polymeric Nanomaterials, eds. S. Kobayashi and K. Müllen, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2015, DOI: 10.1007/978ꢀ3ꢀ
6
42ꢀ29648ꢀ2_6, pp. 1218–1227.
(a) Y. Sagara and T. Kato, Nat. Chem., 2009,
1
, 605–610; (b) K.
Ariga, T. Mori and J. P. Hill, Adv. Mater., 2012, 24, 158–176; (c) Z.
Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu and J. Xu,
Chem. Soc. Rev., 2012, 41, 3878–3896; (d) X. Zhang, Z. Chi, Y.
molecular assembled structures that were observed for ROCR
ꢀ
Zhang, S. Liu and J. Xu, J. Mater, Chem. C, 2013,
F. Ciardelli, G. Ruggeri and A. Pucci, Chem. Soc. Rev., 2013, 42
57–870; (f) Z. Ma, Z. Wang, M. Teng, Z. Xu and X. Jia,
1, 3376–3390; (e)
form. However, it appears that in the ROLOꢀform, energy
transfer from excited states with higher energy to excimer sites
is at play, so that the relatively poorly ordered material displays
emission characteristics that are reminiscent of the highly
,
8
ChemPhysChem, 2015, 16, 1811–1828; (g) Y. Sagara, S. Yamane,
M. Mitani, C. Weder and T. Kato, Adv. Mater., 2016, 28, 1073–1095.
(a) Y. Sagara, T. Mutai, I. Yoshikawa and K. Araki, J. Am. Chem.
Soc., 2007, 129, 1520–1521; (b) J. Kunzelman, M. Kinami, B. R.
7
ordered ROCRꢀform. Compound
2 also shows a mechanically
Crenshaw, J. D. Protasiewicz and C. Weder, Adv. Mater., 2008, 20
,
induced shift of the emission band (Fig. S9, ESI†), which is
however much less pronounced than the one observed in the
1
19–122; (c) S.ꢀJ. Yoon, J. W. Chung, J. Gierschner, K. S. Kim, M.ꢀ
G. Choi, D. Kim and S. Y. Park, J. Am. Chem. Soc., 2010, 132
,
case of cyclophane
1
. The comparison clearly shows the benefit
13675–13683; (d) G. Zhang, J. Lu, M. Sabat and C. L. Fraser, J. Am.
Chem. Soc., 2010, 132, 2160–2162; (e) Y. Dong, B. Xu, J. Zhang, X.
Tan, L. Wang, J. Chen, H. Lv, S. Wen, B. Li, L. Ye, B. Zou and W.
Tian, Angew. Chem. Int. Ed., 2012, 51, 10782–10785; (f) X. Luo, W.
Zhao, J. Shi, C. Li, Z. Liu, Z. Bo, Y. Q. Dong and B. Z. Tang, J. Phys.
Chem. C, 2012, 116, 21967–21972; (g) K. Nagura, S. Saito, H. Yusa,
H. Yamawaki, H. Fujihisa, H. Sato, Y. Shimoikeda and S. Yamaguꢀ
chi, J. Am. Chem. Soc., 2013, 135, 10322–10325; (h) S. Yagai, S.
Okamura, Y. Nakano, M. Yamauchi, K. Kishikawa, T. Karatsu, A.
Kitamura, A. Ueno, D. Kuzuhara, H. Yamada, T. Seki and H. Ito, Nat.
of integrating the luminescent motif in a cyclic structure.
In summary, the first mechanoꢀ and thermoresponsive
luminescent cyclophane has been reported. The compound’s
optical properties in the solid state depend strongly on the
morphology, which in turn can be influenced by mechanical
and/or thermal treatment. We showed that switching between
three discrete morphologies is possible. Interpreting the results
broadly, our study demonstrates that the integration of a
fluorescent motif into a cyclic structure is a promising approach
to design stimuliꢀresponsive luminescent molecular materials.
We expect our findings to be general and applicable to
cyclophanes comprising other luminescent cores and/or spacers.
Thus, the present study opens the door to a new suite of stimuli
responsive materials that can change their solidꢀstate properties
such as the hereꢀreported luminescence characteristics and
possibly other electronic or magnetic properties, on command.
Commun., 2014,
5
, 4013; (i) H.ꢀJ. Kim, D. R. Whang, J. Gierschner,
C. H. Lee and S. Y. Park, Angew. Chem. Int. Ed., 2015, 54, 4330–
4
333; (j) Y. Sagara, A. Lavrenova, A. Crochet, Y. C. Simon, K. M.
Fromm and C. Weder, Chem. Eur. J. DOI: 10.1002/chem.201600272
(a) Y. Sagara and T. Kato, Angew. Chem. Int. Ed., 2008, 47, 5175–
8
5
178; (b) Y. Sagara, S. Yamane, T. Mutai, K. Araki and T. Kato,
Adv. Funct. Mater., 2009, 19, 1869–1875; (c) Y. Sagara and T. Kato,
Angew. Chem. Int. Ed., 2011, 50, 9128–9132; (d) H. Li, Z. Chi, B.
Xu, X. Zhang, X. Li, S. Liu, Y. Zhang and J. Xu, J. Mater. Chem.
,
2
011, 21, 3760–3767; (e) H. Li, X. Zhang, Z. Chi, B. Xu, W. Zhou,
S. Liu, Y. Zhang and J. Xu, Org. Lett., 2011, 13, 556–559; (f) Y.
Sagara, T. Komatsu, T. Ueno, K. Hanaoka, T. Kato and T. Nagano,
Adv. Funct. Mater., 2013, 23, 5277–5284; (g) Y. Ren, W. H. Kan, V.
Thangadurai and T. Baumgartner, Angew. Chem. Int. Ed., 2012, 51
,
We thank Prof. T. Nakano for optical and thermal
measurements, and Prof. Y. Urano for emission lifetime and
quantum yield experiments. Y.S. is grateful for financial
support from JSPS Postdoctoral Fellowships for Research
Abroad. C.W. acknowledges support from the National Center
of Competence in Research (NCCR) BioꢀInspired Materials, a
research instrument of the Swiss National Science Foundation,
the European Research Council (ERCꢀ2011ꢀAdG 291490ꢀ
MERESPO), and the Adolphe Merkle Foundation.
3
964–3968; (h) S. Yamane, Y. Sagara, T. Mutai, K. Araki and T.
Kato, J. Mater. Chem. C, 2013,
1, 2648–2656; (i) Y. Sagara, T.
Komatsu, T. Ueno, K. Hanaoka, T. Kato and T. Nagano, J. Am.
Chem. Soc., 2014, 136, 4273–4280; (j) Y. Sagara, T. Komatsu, T.
Terai, T. Ueno, K. Hanaoka, T. Kato and T. Nagano, Chem. Eur. J.
,
2
014, 20, 10397–10403.
9
1
(a) D. Ramaiah, P. P. Neelakandan, A. K. Nair and R. R. Avirah,
Chem. Soc. Rev., 2010, 39, 4158–4168; (b) P. G. Ghasemabadi, T.
Yao and G. J. Bodwell, Chem. Soc. Rev., 2015, 44,6494–6518; (c) T.
Stangl, S. Bange, D. Schmitz, D. Würsch, S. Höger, J. Vogelsang and
J. M. Lupton, J. Am. Chem. Soc., 2013, 135, 78–81; (d) S. Liu, D.
Schmitz, S.ꢀS. Jester, N. J. Borys, S. Höger and J. M. Lupton, J. Phys.
Chem. B, 2013, 117, 4197–4203.
0 (a) C. A. Heller, R. A. Henry, B. A. McLaughlin and D. E. Bliss, J.
Chem. Eng. Data, 1974, 19, 214–219; (b) P. Hanhela and D. B. Paul,
Aust. J. Chem., 1984, 37, 553–559; (c) M. Levitus and M. A. Garciaꢀ
Garibay, J. Phys. Chem. A, 2000, 104, 8632–8637.
Notes and references
1
(a) M. M. Caruso, D. A. Davis, Q. Shen, S. A. Odom, N. R. Sottos, S.
R. White, J. S. Moore, Chem. Rev., 2009, 109, 5755–5798; (b) D. A.
Davis, A. Hamilton, J. Yang, L. D. Cremar, D. Van Gough, S. L.
Potisek, M. T. Ong, P. V. Braun, T. J. Martínez, S. R. White, J. S.
Moore, N. R. Sottos, Nature, 2009, 459, 68–72; (c) G. R. Gossweiler,
G. B. Hewage, G. Soriano, Q. Wang, G. W. Welshofer, X. Zhao, S. L.
1
1
1 L. Qiu, C. Zhu, H. Chen, M. Hu, W. He, Z. Guo, Chem. Commun.
014, 50, 4631–4634.
,
2
2 (a) M. Inouye, K. Fujimoto, M. Furusyo and H. Nakazumi, J. Am.
Chem. Soc., 1999, 121, 1452–1458; (b) H. Abe, Y. Mawatari, H.
Teraoka, K. Fujimoto and M. Inouye, J. Org. Chem., 2004, 69, 495–
Craig, Acs Macro Lett., 2014,
Fang, Y. Lin, Y. Xu, W. Weng, Acs Macro Lett., 2014,
e) H. Zhang, Y. Chen, Y. Lin, X. Fang, Y. Xu, Y. Ruan, W. Weng,
3
, 216–219; (d) Y. Chen, H. Zhang, X.
5
04.
3, 141–145;
1
3 (a) J. Feng, Y. Zhang, C. Zhao, R. Li, W. Xu, X. Li and J. Jiang,
Chem. Eur. J., 2008, 14, 7000–7010; (b) K. E. Brown, W. A.
Salamant, L. E. Shoer, R. M. Young and M. R. Wasielewski, J. Phys.
(
Macromolecules, 2014, 47, 6783–6790; (f) K. Imato, A. Irie, T.
Kosuge, T. Ohishi, M. Nishihara, A. Takahara and H. Otsuka, Angew.
Chem. Int. Ed., 2015, 54, 6168–6172; (g) K. Imato, T. Kanehara, T.
Ohishi, M. Nishihara, H. Yajima, M. Ito, A. Takahara and H. Otsuka,
Chem. Lett., 2014,
4 M. Kasha, H. R. Rawls and M. A. ElꢀBayoumi, Pure Appl. Chem.
965, 11, 371–392.
5 A. Seeboth, D. Lötzsch, R. Ruhmann and O. Muehling, Chem. Rev.
014, 114, 3037–3068.
5, 2588–2593.
1
1
,
,
1
ACS Macro Letters, 2015,
Sijbesma, Chem. Sci., 2016,
4
, 1307–1311; (h) R. Göstl and R. P.
7
, 370–375.
2
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins