D
A. F. Kotthaus et al.
PSP
Synthesis
1H NMR (400 MHz, CDCl3): δ = 3.00–2.89 (m, 4 H), 2.83–2.73 (m, 2 H),
1.81 (br s, 2 H), 1.72–1.58 (m, 6 H), 1.52–1.36 (m, 2 H), 0.83 (s, 6 H).
13C NMR (101 MHz, CDCl3): δ = 66.1, 47.1, 38.2, 26.5, 25.9, 20.5.
MS (EI, 70 eV): m/z (%) = 182 (4, M+), 113 (16), 96 (59), 81 (21), 70
tracted with Et2O (3 × 0.75 mL). The combined organic extracts were
dried (MgSO4) and then concentrated in vacuo. The residue was puri-
fied by flash column chromatography (cyclohexane–EtOAc, 10 to 30%
EtOAc) to yield 64 mg (92%) of the desired aldehyde as a colorless oil;
syn/anti = 93:7 (by 1H NMR of the crude mixture), 95% ee (syn).
(100), 56 (14).
The enantiomeric excess was determined by HPLC [Chiralcel OD-H,
heptane–i-PrOH 9:1, 1.0 mL/min, tR (syn major) = 29.9 min, tR (syn
minor) = 21.0 min].
HRMS-ESI: m/z [M + H]+ calcd for C11H23N2: 183.1856; found:
183.1857.
1H NMR (400 MHz, CDCl3): δ = 9.71 (d, J = 1.7 Hz, 1 H), 7.36–7.26 (m, 3
H), 7.19–7.14 (m, 2 H), 4.79 (dd, J = 12.7, 5.5 Hz, 1 H), 4.68 (dd, J =
12.7, 9.3 Hz, 1 H), 3.81 (td, J = 9.1, 5.5 Hz, 1 H), 2.82–2.72 (m, 1 H),
1.00 (d, J = 7.2 Hz, 3 H).
13C NMR (101 MHz, CDCl3): δ = 202.3, 136.7, 129.2, 128.3, 128.2, 78.2,
48.6, 44.2, 12.3.
N-(4-Methylphenyl)benzamide (10)
A 4 mL vial was charged with benzamide (73 mg, 0.6 mmol, 1.2
equiv), K3PO4 (222 mg 1.05 mmol, 2.1 equiv), and CuI (4.76 mg, 0.025
mmol, 5 mol%). p-Iodotoluene (109 mg, 0.5 mmol, 1 equiv) and rac-6
(9 mg, 0.05 mmol, 10 mol%), dissolved in 1,4-dioxane (0.5 mL), were
added to the mixture and the reaction mixture was stirred at 110 °C
for 24 h under an argon atmosphere. The mixture was diluted with
EtOAc (1–2 mL), filtered through a short pad of silica gel, and washed
with EtOAc (5–10 mL). The filtrate was concentrated under reduced
pressure to provide the crude product, which was purified by column
chromatography (cyclohexane–EtOAc 90:10) to afford 90 mg (85%) of
10 as a white solid; Rf = 0.54 (cyclohexane–EtOAc 1:1 [UV]).
The analytical data were in complete agreement with the previously
published data.14
Supporting Information
Supporting information for this article is available online at
1H NMR (600 MHz, CDCl3): δ = 7.88 (s, 1 H), 7.87–7.83 (m, 2 H), 7.57–
7.50 (m, 3 H), 7.49–7.43 (m, 2 H), 7.16 (d, J = 8.1 Hz, 2 H), 2.34 (s, 3 H).
S
u
p
p
o
nrtogI
f
rmoaitn
S
u
p
p
ortiInfogrmoaitn
13C NMR (151 MHz, CDCl3): δ = 165.8, 135.5, 135.3, 134.4, 131.8,
129.7, 128.9, 127.1, 120.5, 21.0.
References
MS (EI): m/z (%) = 211.1 (10), 106.1 (9), 105.1 (100), 77.1 (72), 51.1
(1) Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem. Int. Ed. 1998,
37, 2580.
(2) (a) Kizirian, J.-C. Chem. Rev. 2008, 108, 140. (b) Bennani, Y. L.;
Hanessian, S. Chem. Rev. 1997, 97, 3161.
(20).
The analytical and spectral data were in complete agreement with the
previously published data.13
(3) (a) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2010, 1, 13. (b) Jin, J.;
Li, X.; Huang, Y.; Wu, F.; Wan, B. Chem. Eur. J. 2010, 16, 8259.
(c) Jia, X.; Lin, A.; Mao, Z.; Zhu, C.; Cheng, Y. Molecules 2011, 16,
2971. (d) Denmark, S. E.; Fu, J.; Lawler, M. J. J. Org. Chem. 2006,
71, 1523. (e) Jiang, X.; Gandelman, M. J. Am. Chem. Soc. 2015,
137, 2542. (f) Scarborough, C. C.; McDonald, R. I.; Hartmann, C.;
Sazama, G. T.; Bergant, A.; Stahl, S. S. J. Org. Chem. 2009, 74,
2613. (g) Breuning, M.; Hein, D.; Steiner, M.; Gessner, V. H.;
Strohmann, C. Chem. Eur. J. 2009, 15, 12764. (h) Li, X.; Schenkel,
L. B.; Kozlowski, M. C. Org. Lett. 2000, 2, 875.
(2S)-1-Phenyl-2-{2-[(2S)-pyrrolidin-2-yl]propan-2-yl}pyrrolidine
[(S,S)-11]
(S,S)-2,2′-(Propane-2,2-diyl)dipyrrolidine [(S,S)-6; 150 mg, 0.823
mmol), bromobenzene (95 μL, 0.905 mmol), and KOt-Bu) (146 mg,
95%, 1.23 mmol) were suspended in xylene (5 mL) and heated for 45
min to 210 °C in a microwave reactor. After the mixture was cooled
down to r.t., the solids were filtered off and the solvent was removed
under reduced pressure. The residue was purified by flash column
chromatography (CH2Cl2–MeOH–25% aq NH3 93:5:2) to yield 119 mg
25
(56%) of the title compound as a colorless oil; [α]D +13.6 (c 1.365,
(4) Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002,
124, 11684.
EtOH).
(5) (a) Cussó, O.; Garcia-Bosch, I.; Ribas, X.; Lloret-Fillol, J.; Costas,
M. J. Am. Chem. Soc. 2013, 135, 14871. (b) White, M. C.; Chen, M.
S. Science 2007, 318, 783.
(6) Carbone, C.; O’Brien, P.; Hilmersson, G. J. Am. Chem. Soc. 2010,
132, 15445.
(7) Wagner, C.; Kotthaus, A. F.; Kirsch, S. F. Chem. Commun. 2017,
53, 4513.
(8) Journot, G.; Neier, R.; Stoeckli-Evans, H. Acta Crystallogr., Sect. E
2010, 66, o392.
IR (ATR): 3354, 3057, 2961, 2869, 1595, 1501, 1474, 1361, 1319, 1292,
1156, 1077, 991, 960, 745, 693, 524 cm–1
.
1H NMR (400 MHz, CDCl3): δ = 7.22–7.17 (m, 2 H), 6.90–6.86 (m, 2 H),
6.67 (tt, J = 7.1, 1.1 Hz, 1 H), 4.07 (dd, J = 8.3, 1.7 Hz, 1 H), 3.63–3.57
(m, 1 H), 3.35–3.26 (m, 1 H), 3.01–2.87 (m, 2 H), 2.82–2.76 (m, 1 H),
2.09–1.96 (m, 1 H), 1.96–1.56 (m, 6 H), 1.54–1.43 (m, 1 H), 0.91 (s, 3
H), 0.84 (s, 3 H).
13C NMR (101 MHz, CDCl3): δ = 151.4, 128.7, 116.2, 114.1, 65.2, 63.7,
52.8, 47.1, 43.0, 26.8, 26.8, 26.2, 24.9, 21.2, 20.6.
(9) Journot, G.; Neier, R.; Stoeckli-Evans, H. Acta Crystallogr., Sect. C
2012, 68, o119.
HRMS-ESI: m/z [M + H]+ calcd for C17H27N2: 259.2169; found:
(10) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem.
Soc. 2001, 123, 7727.
259.2172.
(11) For the arylation protocol, see: Shi, L.; Wang, M.; Fan, C.-A.;
Zhang, F.-M.; Tu, Y.-Q. Org. Lett. 2003, 5, 3515.
(12) (a) Patora-Komisarska, K.; Benohoud, M.; Ishikawa, H.; Seebach,
D.; Hayashi, Y. Helv. Chim. Acta 2011, 94, 719. (b) Seebach, D.;
Sun, X.; Sparr, C.; Ebert, M.-O.; Schweizer, W. B.; Beck, A. K. Helv.
Chim. Acta 2012, 95, 1064.
(2R,3S)-2-Methyl-4-nitro-3-phenylbutanal (14)
Propanal (242 μL, 3.35 mmol, 10 equiv) was added to a suspension of
(S,S)-11 (5 mg, 0.02 mmol, 0.06 equiv) and trans-β-nitrostyrene (12;
50 mg, 0.335 mmol, 1 equiv) in n-hexane (1 M). The reaction mixture
was stirred at r.t. for 5 h. Then aq 1 N HCl (1 mL) was added and ex-
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2017, 49, A–E