Angewandte Chemie International Edition
10.1002/anie.201909770
COMMUNICATION
with formless morphology, a portion of activity sites are blocked
and thus, the electrocatalytic activity is lowered, resulting in the
deterioration of NRR electrocatalysis. As for NPG-P@ZIF-8, the
smaller NPG particle size leads to less active sites, thus reced-
ing the catalytic performance of NRR. To evaluate the stability of
NPG@ZIF-8, CA tests were taken for 10 consecutive cycles (2 h
for each) and the morphology of catalyst was characterized after
the long-time electrocatalysis (Figure 4b and S21). NPG@ZIF-8
catalyst shows a minor change in ammonia yield rate and Fara-
daic efficiency after ten times of recycling test, which also keeps
the original morphology. The high ammonia yield and Faradaic
efficiency illustrate the rationality of our design on NPG@ZIF-8
composite and the expectation on its high stability and superior
electrocatalytic activity. With ease of reproducible synthesis, this
result will enable porous metal embedded ZIF/MOF composites
as a promising series of electrocatalysts for ammonia production.
Keywords: nanoporous gold • zeolitic imidazolate frameworks
(
ZIFs) • nitrogen fixation • ammonia synthesis • electrocatalysis
[
1]
a) J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter,
Nat. Geosci. 2008, 1, 636–639; b) R. Schloegl, Angew. Chem. Int. Ed.
2003, 42, 2004–2008; Angew. Chem. 2003, 115, 2050–2055.
Y. Wang, T. J. Meyer, Chem 2019, 5, 496–497.
[2]
[
3]
S. L. Foster, S. I. P. Bakovic, R. D. Duda, S. Maheshwari, R. D. Milton,
S. D. Minteer, M. J. Janik, J. N. Renner, L. F. Greenlee, Nat. Catal.
2
018, 1, 490–500.
[
4]
a) N. Cao, G. Zheng, Nano Res. 2018, 11, 2992–3008; b) B. Cui, J.
Zhang, S. Liu, X. Liu, W. Xiang, L. Liu, H. Xin, M. J. Lefler, S. Licht,
Green Chem. 2017, 19, 298–304.
[5]
H. Tao, C. Choi, L.-X. Ding, Z. Jiang, Z. Han, M. Jia, Q. Fan, Y. Gao, H.
Wang, A. W. Robertson, S. Hong, Y. Jung, S. Liu, Z. Sun, Chem 2019,
5, 204–214.
[
[
[
[
[
[
[
6]
7]
8]
9]
Y. Yao, S. Zhu, H. Wang, H. Li, M. Shao, J. Am. Chem. Soc. 2018, 140,
1
496–1501.
D. Bao, Q. Zhang, F.-L. Meng, H.-X. Zhong, M.-M. Shi, Y. Zhang, J.-M.
Yan, Q. Jiang, X.-B. Zhang, Adv. Mater. 2017, 29, 1604799.
M. R. Lee, H. K. Lee, Y. Yang, C. S. L. Koh, C. L. Lay, Y. H. Lee, I. Y.
Phang, X. Y. Ling, ACS Appl. Mater. Inter. 2017, 9, 39584–39593.
S. Pedireddy, H. K. Lee, W. W. Tjiu, I. Y. Phang, H. R. Tan, S. Q. Chua,
C. Troadec, X. Y. Ling, Nat. Commun. 2014, 5, 4947.
10] S. Licht, B. Cui, B. Wang, F.-F. Li, J. Lau, S. Liu, Science 2014, 345,
37–640.
6
11] F. Pang, Z. Wang, K. Zhang, J. He, W. Zhang, C. Guo, Y. Ding, Nano
Energy 2019, 58, 834–841.
12] H. K. Lee, C. S. L. Koh, Y. H. Lee, C. Liu, I. Y. Phang, X. Han, C. K.
Tsung, X. Y. Ling, Sci. Adv. 2018, 4, eaar3208.
Figure 4. (a) Comparison of catalytic performances of various electrocatalysts.
(
b) Cycling tests of NPG@ZIF-8 catalyst at –0.6 V vs RHE.
[13] Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang, T.-A. Bu, W.-Y.
Gao, N. Zhang, X. Su, X. Feng, J.-W. Zhou, B. Wang, C.-W. Hu, A.-X.
Yin, R. Si, Y.-W. Zhang, C.-H. Yan, Nat. Catal. 2019, 2, 448–456.
[
[
14] H.-C. Zhou, S. Kitagawa, Chem. Soc. Rev. 2014, 43, 5415–5418.
15] A. U. Czaja, N. Trukhan, U. Müller, Chem. Soc. Rev. 2009, 38, 1284–
In summary, new NPG@ZIF-8 composite has been designed
and fabricated, which is highly effective and stable for enhanced
NRR electrocatalytic performance under ambient condition. Our
design achieves a remarkable ammonia yield rate of (28.7 ± 0.9)
1
293.
[16] a) U. P. N. Tran, K. K. A. Le, N. T. S. Phan, ACS Catal. 2011, 1, 120–
127; b) R. Zou, P. Z. Li, Y. F. Zeng, J. Liu, R. Zhao, H. Duan, Z. Luo, J.
G. Wang, R. Zou, Y. Zhao, Small 2016, 12, 2334–2343.
–
1
–2
ȝgxh xcm at –0.8 V vs RHE and a superior Faradaic efficiency
of 44% at –0.6 V vs RHE, which also shows excellent selectivity,
stability, and durability. In fact, NPG@ZIF-8 exhibits a supreme
enhancement of NRR catalysis, compared with those traditional
electrocatalysts. Extensive control experiments demonstrate the
unprecedented electrochemical performance and instantiate the
significance of catalytic sites on NPG core and hydrophobic ZIF-
[
[
[
17] W. Ma, Q. Jiang, P. Yu, L. Yang, L. Mao, Anal. Chem. 2013, 85, 7550–
557.
7
18] K. Lv, C. Teng, M. Shi, Y. Yuan, Y. Zhu, J. Wang, Z. Kong, X. Lu, Y.
Zhu, Adv. Funct. Mater. 2018, 28, 1802339.
19] G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X.
Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J.
Ma, S. C. Loo, W. D. Wei, Y. Yang, J. T. Hupp, F. Huo, Nat. Chem.
2012, 4, 310–316.
8
shell. This approach effectively solves the bottleneck problems
of HER competition and low NRR electrocatalytic activity, which
allows a facile integration of highly active sites with hydrophobic
porous shells. It can be anticipated that this strategy will create
tremendous opportunities to construct promising electrocatalytic
systems for sustainable NRR application in practice.
[20] Y. Cheng, S. Lu, W. Xu, H. Wen, J. Wang, J. Mater. Chem. A 2015, 3,
6774–16784.
21] D. Zhu, L. Zhang, R. E. Ruther, R. J. Hamers, Nat. Mater. 2013, 12,
36–841.
1
[
8
[
[
22] G. W. Watt, J. D. Chrisp, Anal. Chem. 1952, 24, 2006–2008.
23] H. Y. F. Sim, H. K. Lee, X. Han, C. S. L. Koh, G. C. Phan-Quang, C. L.
Lay, Y.-C. Kao, I. Y. Phang, E. K. L. Yeow, X. Y. Ling, Angew. Chem.
Int. Ed. 2018, 57, 17058–17062; Angew. Chem. 2018, 130, 17304–
1
7308.
Acknowledgements
[
24] Y. Zhao, R. Shi, X. Bian, C. Zhou, Y. Zhao, S. Zhang, F. Wu, G. I. N.
Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Sci. 2019, 6,
We are grateful to the support from the Program for Innovative
Research Team in University of Tianjin (TD13-5074) and Tianjin
Normal University (52XB1907).
1
802109.
This article is protected by copyright. All rights reserved.