Full Paper
Orpen, J. N. Harvey, Coord. Chem. Rev. 2009, 253, 704–722; g) Z. Freixa,
P. N. M. van Leeuwen, Coord. Chem. Rev. 2008, 252, 1755–1786; h) P.
Dydio, W. I. Dzik, M. Lutz, B. de Bruin, J. N. H. N. H. Reek, Angew. Chem.
Int. Ed. 2011, 50, 396–400; Angew. Chem. 2011, 123, 416; i) W.-H. Zhang,
S. W. Chien, T. S. A. Hor, Coord. Chem. Rev. 2011, 255, 1991–2024.
[2] P. Thordarson, E. J. A. Bijsterveld, A. E. Rowan, R. J. M. Nolte, Nature 2003,
424, 915–918.
[3] C. Gibson, J. Rebek, Org. Lett. 2002, 4, 1887–1890.
[4] D. H. Leung, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2006, 128,
9781–9797.
[5] H. Ito, T. Kusukawa, M. Fujita, Chem. Lett. 2000, 29, 598–599.
[6] M. M. Kuil, T. T. Soltner, P. W. N. M. Van Leeuwen, J. N. H. Reek, J. Am.
Chem. Soc. 2006, 128, 11344–11345.
[7] S. H. A. M. Leenders, R. Gramage-Doria, B. de Bruin, J. N. H. Reek, Chem.
Soc. Rev. 2015, 44, 433–448.
[8] L. Catti, Q. Zhang, K. Tiefenbacher, Chem. Eur. J. 2016, 22, 9060–9066.
[9] a) Supramolecular Catalysis (Ed.: P. W. N. M. van Leeuwen), Wiley-VCH,
2008, Weinheim; b) D. Sémeril, C. Jeunesse, D. Matt, L. Toupet, Angew.
Chem. Int. Ed. 2006, 45, 5810–5814; Angew. Chem. 2006, 118, 5942; c) D.
Sémeril, D. Matt, L. Toupet, Chem. Eur. J. 2008, 14, 7144–7155; d) B. Ker-
sting, U. Lehman, in R. van Eldik, C. D. Hubbard, editors: Advances in
Inorganic Chemistry, Vol 61. The Netherlands: Elsevier, 2009, pp. 407–
470; e) M. Jouffroy, R. Gramage-Doria, D. Armspach, D. Sémeril, W. Ober-
hauser, D. Matt, L. Toupet, Angew. Chem. Int. Ed. 2014, 53, 3937–3940;
Angew. Chem. 2014, 126, 4018; f) C. Garcia-Simón, R. Gramage-Doria, S.
Raoufmoghaddam, T. Parella, M. Costas, X. Ribas, J. N. H. Reek, J. Am.
Chem. Soc. 2015, 137, 2680–2687.
and to apply restraints in order to avoid instability during refine-
ments. The level A alerts in the checkcif are thus mainly due to the
thermal motion of the O-propyl groups and the [BF4]– anions, but
also to the disordered CH2Cl2 molecule. Note that this data collec-
tion was made at 110K. Another data collection was made at 100K:
at this temperature, we observed a phase transition [beta angle
decrease from 91.034(2) to 90.277(1)]. The corresponding space
group was again unambiguously Pn, but seemingly the transition
went to orthorhombic Pnn2. Final results: R1 = 0.067, wR2 = 0.191,
goodness of fit = 0.602, 4518 parameters, residual electron density:
min./max. = –0.821/1.140 e Å–3
.
CCDC 771989 (for 2), and 768418 (for 3) contain the supplementary
Allylic Alkylation Experiments: A CH2Cl2 solution (15 mL) of
[Pd(η3-C3H5)(1)]BF4 (0.019 g, 0.01 mmol), cinnamyl acetate (0.176 g,
1.00 mmol), dimethylmalonate (0.396 g, 3.00 mmol), N,O-bis(tri-
methylsilyl)acetamide (BSA) (0.610 g, 3.00 mmol) and a catalytic
amount of KOAc was stirred at room temperature for 2 h. The solu-
tion was then diluted with a saturated aqueous solution of NH4Cl
(10 mL) and CH2Cl2 (10 mL). To determine the conversion and the
product distribution by GC, decane (0.10 mL) was added to the
organic phase. GC analysis gave the following product distribution:
dimethyl [(2E)-3-phenylprop-2-en-1-yl]propanedioate: 96 %; di-
methyl (1-phenylprop-2-en-1-yl)malonate: 4 %.
[10] L. Monnereau, D. Sémeril, D. Matt, L. Toupet, Adv. Synth. Catal. 2009, 351,
1629–1636.
[11] a) V. F. Slagt, J. N. H. Reek, P. C. J. Kamer, P. W. N. M. van Leeuwen, Angew.
Chem. Int. Ed. 2001, 40, 4271–4274; Angew. Chem. 2001, 113, 4401;
b) T. S. Koblenz, J. Wassenaar, J. N. H. Reek, Chem. Soc. Rev. 2008, 37,
247–262; c) H. Amouri, C. Desmarets, J. Moussa, Chem. Rev. 2012, 112,
2015–2041.
[12] a) E. Engeldinger, D. Armspach, D. Matt, P. G. Jones, R. Welter, Angew.
Chem. Int. Ed. 2002, 41, 2593–2596; Angew. Chem. 2002, 114, 2705; b) R.
Gramage-Doria, D. Armspach, D. Matt, L. Toupet, Angew. Chem. Int. Ed.
2011, 50, 1554–1559; Angew. Chem. 2011, 123, 1592; c) T. Chavagnan,
D. Sémeril, D. Matt, L. Toupet, Eur. J. Org. Chem. 2017, 313–323; d) J.
Yang, B. Chatelet, D. Herault, J. P. Dutasta, A. Martinez, Eur. J. Org. Chem.
2018, 5618–5628.
Butadiene Polymerisation: To a 25-mL Schlenk flask containing a
nickel complex (4 μmol) was added toluene (18 mL). After the mix-
ture was frozen with liquid nitrogen, the inner gas was evacuated
and the Schlenk flask was backfilled with butadiene by using a
balloon filled with butadiene gas. The mixture was warmed to room
temperature, and a solution of MAO (Al/Ni = 1000) in toluene solu-
tion (2 mL) was added to the mixture. After stirring the mixture at
room temperature (400 rpm) for 4 hours, the reaction was
quenched by adding MeOH (50 μL). The solution was then poured
into a HCl/MeOH solution (HCl/MeOH = 1:4 v/v, 150 mL). The result-
ing precipitate was collected by filtration and dried in vacuo over-
night. The polymer distribution was determined using 13C{1H}
NMR.[25] The molecular weights (Mn) and molecular weight distribu-
tions (Mw/Mn) of the polymer were measured by gel permeation
chromatography (GPC). The Mn and Mw/Mn values were deter-
mined using the polystyrene calibration.
[13] M. Awada, C. Jeunesse, D. Matt, L. Toupet, R. Welter, Dalton Trans. 2011,
40, 10063–10070.
[14] Slight broadening of the 1H NMR signals (600 MHz, CD2Cl2) was ob-
served in the temperature range 0 °C to +40 °C. This may reflect small
conformational changes involving the phenylene spacer.
[15] T. Yamamoto, C. Shikada, S. Kaita, T. Olivier, Y. Maruyama and Y. Wakat-
suki, CCDC 699721: Experimental Crystal Structure Determination, 2009,
Acknowledgments
[16] T. Yamamoto, C. Shikada, S. Kaita, T. Olivier, Y. Maruyama, Y. Wakatsuki,
J. Mol. Catal. A 2009, 300, 1–7.
We gratefully acknowledge financial support from the Univer-
sity of Strasbourg Institute for Advanced Study (to D. M.) and
from the Frontier Research in Chemistry Foundation, Strasbourg
(postdoctoral grant to F. E.).
[17] S. Sameni, C. Jeunesse, D. Matt, L. Toupet, Chem. Eur. J. 2009, 15, 10446–
10456.
[18] The higher activity of complex 5 vs. that of [Ni(η5-C5H5)(PPh3)2]BF4 likely
arises from the bulkiness of the two phosphines which promotes the
coupling step.
[19] S. Tobisch, H. Bögel, R. Taube, Organometallics 1998, 17, 1177–1196.
[20] a) P. Braunstein, J. Zhang, R. Welter, Dalton Trans. 2003, 507–509;
b) J. Zhang, P. Braunstein, R. Welter, Inorg. Chem. 2004, 43, 4172–4177.
[21] A. Salzer, T. L. Court, H. Werner, J. Organomet. Chem. 1973, 54, 325–330.
[22] A. Salzer, H. Werner, Synth. React. Inorg. Met. Org. Chem. 1972, 2, 249–
258.
Keywords: Nickel · Supramolecular chemistry · Molecular
containers · Calixarenes · Butadiene polymerisation · Allylic
alkylation
[23] P. M. Treichel, R. L. Shubkin, Inorg. Chim. Acta 1968, 2, 482–484.
[24] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement;
University of Göttingen: Göttingen, Germany, 1997.
[25] a) F. Conti, M. Delfini, S. A. D. D. Pini, L. Porri, Polymer 1974, 15, 816–818;
b) K. F. Elgert, G. Quack, B. Stutzel, Polymer 1974, 15, 612–613.
[1] a) C. P. Casey, G. T. Whiteker, M. G. Melville, L. M. Petrovich, J. A. Gav-
ney Jr., D. R. Powell, J. Am. Chem. Soc. 1992, 114, 5535–5543; b) C. Wieser,
C. B. Dieleman, D. Matt, Coord. Chem. Rev. 1997, 165, 93–161; c) C. Wieser,
D. Matt, J. Fischer, A. Harriman, J. Chem. Soc., Dalton Trans. 1997, 2391–
2402; d) P. Kuhn, D. Sémeril, C. Jeunesse, D. Matt, M. Neuburger, A. Mota,
Chem. Eur. J. 2006, 12, 5210–5219; e) T. Smejkal, B. Breit, Angew. Chem.
Int. Ed. 2008, 47, 311–315; Angew. Chem. 2008, 120, 317; f) N. Fey, A. G.
Received: October 4, 2019
Eur. J. Inorg. Chem. 0000, 0–0
5
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim