RSC Advances
Paper
4 S. Sengupta and R. Mondal, J. Mater. Chem. A, 2014, 2, 16373–
16377.
5 L. Xie, L. Zhou, T. Liu and X. Xu, RSC Adv., 2016, 6, 106935–
106944.
6 A. Y. Satoh, J. E. Trosko and S. J. Masten, Environ. Sci.
Technol., 2007, 41, 2881–2887.
7 W. Huang, M. Brigante, F. Wu, C. Mousty, K. Hanna and
G. Mailhot, Environ. Sci. Technol., 2013, 47, 1952–1959.
8 X. Li, C. Chen and J. Zhao, Langmuir, 2001, 17, 4118–4122.
9 X. Zhou, J. Lan, G. Liu, K. Deng, Y. Yang, G. Nie, J. Yu and
L. Zhi, Angew. Chem., 2012, 124, 182–186.
Detection of cobalt-oxo intermediates
The active intermediates were prepared from 0.02 mM solution
of complex 1 in acetonitrile with slight ultrapure water at
ꢁ
ꢀ40 C (the pH value was adjusted to 9.5 with ammonia water
previously) using 2 equivalents of mCPBA (85%), and the solu-
tion was infused directly into ion source of high-denition mass
spectrometry with a syringe manually. In addition, to determine
active intermediates, the source temperature was set at 40 ꢁC to
minimize the decomposition of intermediate species.
10 N. Guo, Y. Cao, Y. Rong and D. Jia, RSC Adv., 2016, 6, 106046–
106053.
11 E. M. Siedlecka, A. Wi˛eckowska and P. Stepnowski, J.
Hazard. Mater., 2007, 147, 497–502.
12 H. Kim, W. Kim, Y. Mackeyev, G.-S. Lee, H.-J. Kim,
T. Tachikawa, S. Hong, S. Lee, J. Kim and L. J. Wilson,
Environ. Sci. Technol., 2012, 46, 9606–9613.
13 S. G. Sligar, Science, 2010, 330, 924.
14 P. R. O. De Montellano, Cytochrome P450: Structure,
Mechanism, and Biochemistry, Springer Science & Business
Media, 2005.
15 N. C. Veitch, Phytochemistry, 2004, 65, 249–259.
16 B. L. Allen, G. P. Kotchey, Y. Chen, N. V. Yanamala, J. Klein-
Seetharaman, V. E. Kagan and A. Star, J. Am. Chem. Soc.,
2009, 131, 17194–17205.
17 J. Rittle and M. T. Green, Science, 2010, 330, 933–937.
18 J. Bennett, Y. A. Miah, D. S. Varsani, E. Salvadori and
T. S. Sheriff, RSC Adv., 2016, 6, 103372–103381.
19 T. S. Sheriff, M. Watkinson, M. Motevalli and J. F. Lesin,
Dalton Trans., 2010, 39, 53–55.
20 S. Y. Shaban and R. van Eldik, Dalton Trans., 2011, 40, 287–
294.
21 W. Nam, H. J. Han, S.-Y. Oh, Y. J. Lee, M.-H. Choi, S.-Y. Han,
C. Kim, S. K. Woo and W. Shin, J. Am. Chem. Soc., 2000, 122,
8677–8684.
Conclusions
Nature has developed various metalloenzymes such as heme-
containing horseradish peroxidase and cytochrome P450; they
are capable of stubborn substrate transformations. So there has
long been signicant interest in modelling such enzyme active
sites and developing biomimetic catalysts for various purposes.
Based on the same FeIV active species yet with different catalytic
ability, here we designed [CoIII(opbaX)]ꢀ/H2O2 system which
exhibited excellent catalytic performance in oxidizing targeted
pollutants such as dyes and p-chlorophenol via non-hydroxyl
radical process pathway under high backgrounds of constitu-
ents. The electron-drawing substituents have been proved to
positively promote the H2O2 activation while electron-donating
substituents were proved negatively. The results of radical
trapping experiments and DFT calculations described [CoIV]
Oc]ꢀ and [CoIII–OH]c intermediates, which played as the key
species in this oxidation processes. Accordingly, electron-
withdrawing substituent enhanced the oxidizing power of
[CoIII(opbaX)]ꢀ due to the electron environment change on
cobalt-oxo moiety. This contribution provided further evidence
for the formation of high-valent cobalt-oxo radical species,
which are akin to the oxoiron(IV) complex proposed as the actual
oxidant in the families of P450 and HRP. Meanwhile, future
studies need to give more direct evidence and illumination of
[CoIII–OH]c and [CoIV]Oc]ꢀ in catalysis.
´
´
22 I. Fernandez, J. R. Pedro, A. L. Rosello, R. Ruiz, I. Castro,
X. Ottenwaelder and Y. Journaux, Eur. J. Org. Chem., 2001,
2001, 1235–1247.
Conflicts of interest
´
23 J. Estrada, I. Fernandez, J. Pedro, X. Ottenwaelder, R. Ruiz
and Y. Journaux, Tetrahedron Lett., 1997, 38, 2377–2380.
24 N. A. Stephenson and A. T. Bell, J. Mol. Catal. A: Chem., 2007,
275, 54–62.
There are no conicts of interest to declare.
Acknowledgements
¨
25 K. Auclair, P. Moenne-Loccoz and P. R. Ortiz de Montellano,
J. Am. Chem. Soc., 2001, 123, 4877–4885.
26 D. S. Salnikov, R. Silaghi-Dumitrescu, S. V. Makarov,
R. van Eldik and G. R. Boss, Dalton Trans., 2011, 40,
9831–9834.
This work was supported by the National Natural Science
Foundation of China (No. 51703201), and Zhejiang Provincial
Natural Science Foundation of China (No. LQ17E030003).
27 N. Li, W. Lu, K. Pei, Y. Yao and W. Chen, Appl. Catal., B, 2015,
163, 105–112.
28 N. Li, W. Lu, K. Pei, Y. Yao and W. Chen, ACS Appl. Mater.
Interfaces, 2014, 6, 5869–5876.
Notes and references
ˇ
ˇ
ˇ
ˇ´
´
ˇ
1 M. Simsıkova, M. Bartos, J. Cechal and T. Sikola, Catal. Sci.
Technol., 2016, 6, 3008–3017.
29 L. I. Rodionova, A. V. Smirnov, N. E. Borisova,
¨
2 D. Chatterjee, S. Rothbart and R. van Eldik, RSC Adv., 2013, 3,
3606.
V. N. Khrustalev, A. A. Moiseeva and W. Grunert, Inorg.
Chim. Acta, 2012, 392, 221–228.
3 S. Bhattacharya, S. Bala and R. Mondal, RSC Adv., 2016, 6,
25149–25158.
42882 | RSC Adv., 2017, 7, 42875–42883
This journal is © The Royal Society of Chemistry 2017