10.1002/anie.202000473
Angewandte Chemie International Edition
COMMUNICATION
a monometallic complex (8e) (Scheme 5B). Signals consistent
with alkynyl iodide 7e were also observed. We suggest that the
relatively electron rich alkyne of 7e can displace Au(I) from any
initially formed bimetallic species. The observed trends in the
rates of oxidative addition indicate that charge stabilization in the
transition state is once again a key factor (cf. Scheme 1B).
Reaction of 8a with alkynyl-zinc reagent 9 delivered
coupling product 10 in 47% yield; homocoupled products 11 and
12 also formed in 3% and 7% yield, respectively.[23] Other classes
of organometallic nucleophile resulted predominantly in
homocoupling products (see SI). The origin of this side process
was investigated using an analogue of 8a derived from 13C-
labelled phenyliodoacetylene (see SI). 13C NMR profiling of a
representative cross-coupling revealed the immediate formation
of alkynyl iodide 7a, providing direct evidence for CI reductive
elimination under the reaction conditions. The formation of
homocoupled products then ensued, and these increased over a
week, suggesting that their formation is promoted by
decomposition products of the Au-complex. Hashmi and co-
workers have developed catalytic CC bond formations where
alkynyl-Au(III) species were generated by CI cleavage; these
processes did not proceed via formal CI oxidative addition and
required highly reactive alkynyl-iodine(III) reagents.[20c] The
present study suggests that more available and atom economical
alkynyl-iodine(I) precursors can form the basis for future Au-
catalyzed alkynylations.[24]
Acknowledgements
We thank the Bristol Chemical Synthesis Centre for Doctoral
Training, funded by the EPSRC (EP/L015366/1) and the
University of Bristol (studentship to JAC) and the Royal Society
(URF to JFB) for funding. We thank Tom Leman and Dr Paul
Gates (Bristol) for their assistance with mass spectrometry.
Keywords: gold • oxidative addition • alkenyl iodide • alkynyl
iodide • bipyridyl
References
[1]
[2]
[3]
M. Joost, A. Amgoune, D. Bourissou, Angew. Chem. Int. Ed. 2015, 54,
15022.
M. Joost, A. Zeineddine, L. Estévez, S. Mallet-Ladeira, K. Miqueu, A.
Amgoune, D. Bourissou, J. Am. Chem. Soc. 2014, 136, 14654.
a) A. Zeineddine, L. Estévez, S. Mallet-Laderia, K. Miqueu, A. Amgoune,
D. Bourissou, Nat. Commun. 2017, 8, 565; b) M. S. Messina, J. M.
Stauber, M. A. Waddington, A. L. Rheingold, H. D. Maynard, A. M.
Spokoyny, J. Am. Chem. Soc. 2018, 140, 7065; c) J. Rodriguez, A.
Zeineddine, E. D. S. Carrizo, K. Miqueu, N. Saffon-Merceron, A.
Amgoune, D. Bourissou, Chem. Sci. 2019, 10, 7183; d) M. O. Akram, A.
Das, I. Chakrabarty, N. T. Patil, Org. Lett. 2019, 21, 8101; e) Y. Yang, L.
Eberle, F. F. Mulks, J. F. Wunsch, M. Zimmer, F. Rominger, M. Rudolph,
A. S. K. Hashmi J. Am. Chem. Soc., 2019, 141, 17414.
[4]
[5]
[6]
M. J. Harper, C. J. Arthur, J. Crosby, E. J. Emmett, R. L. Falconer, A. J.
Fensham-Smith, P. J. Gates, T. Leman, J. E. McGrady, J. F. Bower, C.
A. Russell, J. Am. Chem. Soc. 2018, 140, 4440.
For an overview of redox neutral C-C and C-X cross couplings, see M.
O. Akram, S. Banerjee, S. S. Saswade, V. Bedi, N. T. Patil, Chem.
Commun. 2018, 54, 11069
For photosensitized gold-catalysed C-C cross coupling reactions, see,
for example: a) M. S. Winston, W. J. Wolf, F. D. Toste, J. Am. Chem. Soc.
2014, 136, 7777; b) L. Huang, F. Rominger, M. Rudolph, A. S. K. Hashmi,
Chem. Commun. 2016, 52, 6435; c) T. Cornilleau, P. Hermange, E.
Fouquet, Chem. Commun. 2016, 52, 10040; d) V. Gauchot, A.-L. Lee,
Chem. Commun. 2016, 52, 10163; e) A. Tlahuext-Aca, M. N. Hopkinson,
C. G. Daniliuc, F. Glorius, Chem. Eur. J. 2016, 22, 11587; f) S. Kim, J.
Rojas-Martin, F. D. Toste, Chem. Sci. 2016, 7, 85; g) V. Gauchot, D. R.
Sutherland, A.-L. Lee, Chem. Sci. 2017, 8, 2885.
Scheme 6. Transmetallation and reductive elimination from 8a. [a] Determined
[7]
a) M. Livendahl, C. Goehry, F. Maseras, A. M. Echavarren, Chem.
Commun. 2014, 50, 1533; b) I. Fernández, L. P. Wolters and F. M.
Bickelhaupt, J. Comput. Chem. 2014, 35, 2140.
by GC analysis.
In summary, we show for the first time that modification of
the ligand environment at Au can be exploited to allow oxidative
addition of alkenyl and alkynyl iodides.[25] These processes
display an important electronic trend wherein more electron rich
substrates engage in more facile oxidative addition. For alkenyl
iodides, diastereospecific oxidative addition occurs, and, going
forward, this offers a key stereocontrol element. For alkynyl-
based systems, electronically dependent generation of mono- or
bi-metallic complexes is observed. Both new initiation modes can
be integrated into CC bond forming sequences that harness key
steps typical of Pd-catalysis. The challenge of using readily
available internal oxidants for Au(I)→Au(III) redox cycles is well
recognized as a major impediment to realizing Au-catalyzed
CC/CX bond formations. Our studies address this at a
fundamental level, providing valuable insight that should enable
further development of the area.[26]
[8]
[9]
S. G. Bratsch, J. Phys. Chem. Ref. Data 1989, 18, 1.
See, for example; a) M. N. Hopkinson, A. D. Gee, V. Gouverneur, Chem.
Eur. J. 2011, 17, 8248; b) S. Kramer, Chem. Eur. J. 2016, 22, 1; c) L. T.
Ball, G. C. Lloyd-Jones, C. A. Russell, Science 2012, 337, 1644; d) L. T.
Ball, G. C. Lloyd-Jones, C. A. Russell, J. Am. Chem. Soc. 2014, 136,
254; e) X. C. Cambeiro, N. Ahlsten, I. Larrosa, J. Am. Chem. Soc. 2015,
137, 15636; f) M. P. Robinson, G. C. Lloyd-Jones, ACS. Catal. 2018, 8,
7484; C. Fricke, A. Dahiya, W. Reid, F. Schoenebeck, ACS Catal. 2019,
9, 9231.
[10] For thermal gold-catalysed C-C cross coupling reactions, see, for
example: a) M. D. Levin, F. D. Toste, Angew. Chem. Int. Ed. 2014, 53,
6211-6215; b) J. Guenther, S. Mallet-Ladeira, L. Estevez, K. Miqueu, A.
Amgoune, D. Bourissou, J. Am. Chem. Soc. 2014, 136, 1778; c) C.-Y.
Wu, T. Horibe, C. B. Jacobsen, F. D. Toste, Nature 2015, 517, 449-454;
d) J. Serra, C. J. Whiteoak, F. Acuña-Parés, M. Font, J. M. Luis, J. Lloret-
Fillol, X. Ribas, J. Am. Chem. Soc. 2015, 137, 13389; e) J. Serra, T.
Parella, X. Ribas, Chem. Sci. 2017, 8, 946.
[11] Z. Xia, V. Corcé, F. Zhao, C. Przybylski, A. Espagne, L. Jullien, T. Le
Saux, Y. Gimbert, H. Dossmann, V. Mouriès-Mansuy, C. Ollivier, L.
Fensterbank, Nature Chem. 2019, 11, 797; b) Y. Yang, J. Schießl, S.
This article is protected by copyright. All rights reserved.