C O M M U N I C A T I O N S
Table 2. Enantioselective Freidel-Crafts Reaction of Indole
Derivatives (2) with Substituted Enecarbamates (3) Catalyzed by
(R)-1a
Acknowledgment. This work was supported by JSPS for a Grant-
in-Aid for Scientific Research (B) (Grant No. 17350042). We also
acknowledge The JSPS Research Fellowship for Young Scientists
(K.S.) from the Japan Society for the Promotion of Sciences.
Supporting Information Available: Representative experimental
procedure, spectroscopic data for enecarbamates (3) and Friedel-Crafts
products (4), and determination of absolute stereochemistry of 4ag.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Olah, G. A.; Krishnamurti, R.; Prakash, G. K. S. In ComprehensiVe
Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press:
Oxford, 1991; Vol. 3, Chapter 1.8, pp 293-339. (b) Meima, G. R.; Lee,
G. S.; Garces, J. M. In Friedel-Crafts Alkylation; Sheldon, R. A., Bekkum,
H., Eds.; Wiley-VCH: New York, 2001; pp 151-160.
(2) For reviews, see: (a) Jørgensen, K. A. Synthesis 2003, 1117-1125. (b)
Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004,
43, 550-556.
(3) (a) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2001, 123,
4370-4371. (b) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc.
2002, 124, 1172-1173. (c) Paras, N. A.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2002, 124, 7894-7895. (d) Herrera, R. P.; Sgarzani, V.;
Bernardi, L.; Ricci, A. Angew. Chem., Int. Ed. 2005, 44, 6576-6579. (e)
Zhuang, W.; Hazell, R. G.; Jørgensen, K. A. Org. Biomol. Chem. 2005,
3, 2566-2571. (f) Zhuang, W.; Poulsen, T. B.; Jørgensen, K. A. Org.
Biomol. Chem. 2005, 3, 3284-3289. (g) Wang, Y.-Q.; Song, J.; Hong,
R.; Li, H.; Deng, L. J. Am. Chem. Soc. 2006, 128, 8156-8157.
(4) For reviews on chiral Brønsted acid catalysis, see: (a) Schreiner, P. R.
Chem. Soc. ReV. 2003, 32, 289-296. (b) Pihko, P. M. Angew. Chem.,
Int. Ed. 2004, 43, 2062-2064. (c) Bolm, C.; Rantanen, T.; Schiffers, I.;
Zani, L. Angew. Chem., Int. Ed. 2005, 44, 1758-1763. (d) Pihko, P. M.
Lett. Org. Chem. 2005, 2, 398-403. (e) Takemoto, Y. Org. Biomol. Chem.
2005, 3, 4299-4306. (f) Taylor, M. S.; Jacobsen, E. N. Angew. Chem.,
Int. Ed. 2006, 45, 1520-1543. (g) Akiyama, T.; Itoh, J.; Fuchibe, K. AdV.
Synth. Catal. 2006, 348, 999-1010. (h) Connon, S. J. Angew. Chem.,
Int. Ed. 2006, 45, 3909-3912.
(5) (a) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356-5357.
(b) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004,
126, 11804-11085. (c) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am.
Chem. Soc. 2005, 127, 9360-9361. (d) Terada, M.; Machioka, K.;
Sorimachi, K. Angew. Chem., Int. Ed. 2006, 45, 2254-2257. (e) Terada,
M.; Sorimachi, K.; Uraguchi, D. Synlett 2006, 133-136.
a Unless otherwise noted, all reactions were carried out with 0.005 mmol
of (R)-1 (5 mol %), 0.11 mmol of 2, and 0.10 mmol of 3 in 0.5 mL of
CH3CN at 0 °C for 36 h. b Isolated yield. c Enantiomeric excess was
determined by chiral HPLC analysis. d Reaction run at room temperature
for 48 h. e The reactions were conducted using 0.005 mmol of (R)-1 (5
mol %), 0.10 mmol of 2a, and 0.15 mmol of 3. f Reaction run at 50 °C for
48 h. g Reaction run at 50 °C for 20 h. h Absolute configuration was
determined to be S for 4ag. See Supporting Information for details.
i Reaction run at room temperature for 6 h.
(6) (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int.
Ed. 2004, 43, 1566-1568. (b) Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe,
K. Org. Lett. 2005, 7, 2583-2585. (c) Rueping, M.; Sugiono, E.; Azap,
C.; Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 3781-3783. (d)
Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.; Wang,
Y.; Antilla, J. C. J. Am. Chem. Soc. 2005, 127, 15696-15697. (e)
Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem., Int. Ed. 2005, 44,
7424-7427. (f) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W.
C. J. Am. Chem. Soc. 2006, 128, 84-86. (g) Akiyama, T.; Tamura, Y.;
Itoh, J.; Morita, H.; Fuchibe, K. Synlett 2006, 141-143. (h) Seayad, J.;
Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086-1087. (i)
Rueping, M.; Sugiono, E.; Azap, C. Angew. Chem., Int. Ed. 2006, 45,
2617-2619. (j) Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew.
Chem., Int. Ed. 2006, 45, 3683-3686. (k) Itoh, J.; Fuchibe, K. Akiyama,
T.; Angew. Chem., Int. Ed. 2006, 45, 4796-4798. (l) Nakashima, D.;
Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626-9627. (m) Akiyama,
T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc. 2006, 128, 13070-13071.
(n) Chen, X.-H.; Xu, X.-Y.; Liu, H.; Cun, L.-F.; Gong, L.-Z. J. Am. Chem.
Soc. 2006, 128, 14802-14803.
These results suggest that both reactions proceeded through the
common intermediate (A), composed of 1 and an imine, as it was
generated by the protonation of enecarbamates 3b. Hence the
present activation mode is regarded as an efficient alternative to
generating aliphatic imines,10 which are generally labile and difficult
to isolate.11 Furthermore, the reaction rate was dependent on the
geometry of the enecarbamate employed; (Z)-3b showed higher
reactivity than (E)-3b. It can be considered that the protonation of
3 by 1 via ionic transition states would be the rate-determining
step. This mechanistic assumption is strongly supported by the
solvent effect, in which a high catalytic efficiency was observed
in a highly polar but protophobic solvent.
(7) Presented at the 86th Annual Meeting of the Chemical Society of Japan,
March 27-30, 2006; Abstract No. 2H5-17.
(8) Ogawa, A.; Curran, D. P. J. Org. Chem. 1997, 62, 450-451.
(9) For a review on the classification of dipolar aprotic solvents, see: Kolthoff,
I. M. Anal. Chem. 1974, 46, 1992-2003.
(10) During the preparation of this manuscript, Kobayashi, et al. reported the
metal salt-catalyzed Mannich reaction of 1,3-dicarbonyl compounds with
enecarbamates as an aliphatic imine surrogate, see: Kobayashi, S.;
Gustafsson, T.; Shimizu, Y.; Kiyohara, H.; Matsubara, R. Org. Lett. 2006,
8, 4923-4925.
(11) Imine (5) was completely isomerized to enecarbamate (3b) during
distillation, and hence it can be considered that enecarbametes (3) serve
as stable and useful precursors of aliphatic imines in the present activation
mode.
In conclusion, we have demonstrated the first enantioselective
Friedel-Crafts reaction catalyzed by a chiral monophosphoric acid
via activation of electron-rich alkenes. Further application of the
present method, a practical protocol for in situ generation of
aliphatic imines, is in progress with the aim of developing efficient
asymmetric organic transformations.
JA0678166
9
J. AM. CHEM. SOC. VOL. 129, NO. 2, 2007 293