Communication
ChemComm
9 R. K. Behan, L. M. Hoffart, K. L. Stone, C. Krebs and M. T. Green,
J. Am. Chem. Soc., 2006, 128, 11471–11474.
10 K. L. Stone, R. K. Behan and M. T. Green, Proc. Natl. Acad. Sci. U. S. A.,
2006, 103, 12307–12310.
be attributed to the positive shift in the redox potential upon
sulphur ligation, as evident from cyclic voltammetry experi-
ments, which shows a 170 mV positive shift in the Fe2+/3+
´
potential (Fig. S13, ESI†) in 1a-trans relative to 2a-trans. In 11 X. Engelmann, I. Monte-Perez and K. Ray, Angew. Chem., Int. Ed.,
2016, 55, 7632–7649.
12 R. A. Baglia, J. P. T. Zaragoza and D. P. Goldberg, Chem. Rev., 2017,
addition, a change in mechanism in the C–H bond oxidation
reactions from HAA to proton coupled electron transfer (PCET)33
117, 13320–13352.
is evident from the reduction of KIE from a value of 20 in 2-trans
to 1.47 in 1-trans (using xanthene as a substrate). This drastic
downshift in KIE is unique for sulfur substitution and is not
observed in the oxygen substituted oxoiron(IV) center.34 Under-
standing this lowering of KIE will require further experimental
and computational work. However the significant effect of the
equatorial sulfur ligation on the physical and chemical properties
of oxoiron(IV) cores may provide a compelling rationale for
nature’s use of the cis-thiolate ligated oxoiron(IV) motif in key
metabolic transformations that involve the activation of strong
C–H bonds.
This work was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy – EXC 2008 – 390540038 – UniSysCat to K. R.,
P. H., and H. D., Excellence Strategy – EXC-2033 – Project number
390677874 to U.-P. A. and P. G., AP242/5-1 to U.-P. A. and the
Heisenberg-Professorship and RA/2409/8-1 to K. R. We also thank
the Fraunhofer Internal Programs under Grant No. Attract 097-
602175 (U.-P. A.) and the Bundesministerium fu¨r Bildung und
Forschung (BMBF, Operando-XAS project, 05K19KE1). The
Helmholtz-Zentrum Berlin (HZB) is thanked for enabling the
XAS experiments at KMC-3 of the BESSY synchrotron.
13 J. B. Gordon, A. C. Vilbert, I. M. DiMucci, S. N. MacMillan,
¨
K. M. Lancaster, P. Moenne-Loccoz and D. P. Goldberg, J. Am. Chem.
Soc., 2019, 141, 17533–17547.
14 L. Vicens, G. Olivo and M. Costas, ACS Catal., 2020, 10, 8611–8631.
15 J. Chen, Z. Jiang, S. Fukuzumi, W. Nam and B. Wang, Coord. Chem.
Rev., 2020, 421, 213443.
16 T. Devi, Y.-M. Lee, W. Nam and S. Fukuzumi, Coord. Chem. Rev.,
2020, 410, 213219.
17 S. Fukuzumi, K.-B. Cho, Y.-M. Lee, S. Hong and W. Nam, Chem. Soc.
Rev., 2020, 49, 8988–9027.
18 S. Hong, Y.-M. Lee, K. Ray and W. Nam, Coord. Chem. Rev., 2017,
334, 25–42.
19 W. Nam, Y.-M. Lee and S. Fukuzumi, Acc. Chem. Res., 2018, 51,
2014–2022.
20 M. Sankaralingam, Y.-M. Lee, W. Nam and S. Fukuzumi, Coord.
Chem. Rev., 2018, 365, 41–59.
21 M. R. Bukowski, K. D. Koehntop, A. Stubna, E. L. Bominaar, J. A. Halfen,
E. Mu¨nck, W. Nam and L. Que, Science, 2005, 310, 1000–1002.
22 D. Kumar, W. Thiel and S. P. de Visser, J. Am. Chem. Soc., 2011, 133,
3869–3882.
23 S. Aluri and S. P. de Visser, J. Am. Chem. Soc., 2007, 129, 14846–14847.
24 P. Gerschel, B. Battistella, D. Siegmund, K. Ray and U.-P. Apfel,
Organometallics, 2020, 39, 1497–1510.
25 P. Gerschel, K. Warm, E. Farquhar, U. Englert, M. Reback,
D. Siegmund, K. Ray and U.-P. Apfel, Dalton Trans., 2019, 48,
5923–5932.
26 D. Kass, T. Corona, K. Warm, B. Braun-Cula, U. Kuhlmann, E. Bill,
S. Mebs, M. Swart, H. Dau and M. Haumann, J. Am. Chem. Soc., 2020,
142, 5924–5928.
27 D. Macikenas, E. Skrzypczak-Jankun and J. D. Protasiewicz, J. Am.
Chem. Soc., 1999, 121, 7164–7165.
28 Since we start with a pure solution of 1a-trans, the sole product that
is formed is 1-trans (see also ref. 33). Oxidation of a solution of 1a-cis
leads to only iron(III)products; so we presume that 1-cis is too
unstable to be trapped in high-yields.
Conflicts of interest
There are no conflicts to declare.
29 Acoording to Badger’s rule (R. M. Badger, J. Chem. Phys., 1935, 3,
710–714), which is previously shown to be valid for oxoiron(IV)
complexes (see ref. 8).
30 (a) D. Mandal and S. Shaik, J. Am. Chem. Soc., 2016, 138, 2094–2097;
(b) D. Mandal, D. Mallick and S. Shaik, Acc. Chem. Res., 2018, 51,
107–117; (c) E. J. Klinker, S. Shaik, H. Hirao and L. Que Jr., Angew.
Chem., Int. Ed., 2009, 48, 1291–1295.
31 J. E. M. N. Klein, D. Mandal, W.-M. Ching, D. Mallick, L. Que, Jr. and
S. Shaik, J. Am. Chem. Soc., 2017, 139, 18705–18713.
32 Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies,
CRC Press, 2007, DOI: 10.1201/9781420007282.
Notes and references
1 M. Costas, M. P. Mehn, M. P. Jensen and L. Que, Chem. Rev., 2004,
104, 939–986.
2 B. Meunier, S. P. de Visser and S. Shaik, Chem. Rev., 2004, 104,
3947–3980.
3 J. B. Gordon and D. P. Goldberg, Reference Module in Chemistry,
Molecular Sciences and Chemical Engineering, Elsevier, 2020, DOI:
10.1016/B978-0-12-409547-2.14906-6.
4 M. T. Green, J. H. Dawson and H. B. Gray, Science, 2004, 304, 1653–1656.
5 K. L. Stone, R. K. Behan and M. T. Green, Proc. Natl. Acad. Sci. U. S. A.,
2005, 102, 16563–16565.
6 J. Rittle and M. T. Green, Science, 2010, 330, 933–937.
7 F. Ogliaro, S. P. de Visser and S. Shaik, J. Inorg. Biochem., 2002, 91, 554–567.
8 M. T. Green, J. Am. Chem. Soc., 2006, 128, 1902–1906.
33 J. M. Meyer, Acc. Chem. Res., 2010, 44, 36–46.
´
34 I. Monte-Perez, X. Engelmann, Y.-M. Lee, M. Yoo, E. Kumaran,
E. R. Farquhar, E. Bill, J. England, W. Nam, M. Swart and K. Ray,
Angew. Chem., Int. Ed., 2017, 56, 14384–14388.
2950 | Chem. Commun., 2021, 57, 2947ꢀ2950
This journal is The Royal Society of Chemistry 2021