Page 11 of 12
1
Journal of the American Chemical Society
2
3
4
5
6
7
8
9
G.; Bertrand, G. Science 2011, 333, 610–613. (h) Bissinger, P.;
(27) (a) Hudnall, T. W.; Bielawski, C. W. J. Am. Chem. Soc. 2009,
131, 16039–16041. For a review, see: Moerdyk, J. P.; Schilter, D.;
Bielawski, C.W. Acc. Chem. Res. 2016, 49, 1458–1468.
(28) César, V.; Lugan, N.; Lavine, G. Eur. J. Inorg. Chem. 2010,
361–365.
Braunschweig, H.; Damme, A.; Krummenacher, I.; Phukan, A. K.;
Radacki, K.; Sugawara, S. Angew. Chem. Int. Ed. 2014, 53, 7360–
7363. (i) Mahoney, J. K.; Martin, D.; Thomas, F.; Moore, C. E.;
Rheingold, A. L.; Bertrand J. Am. Chem. Soc. 2015, 137, 7519−7525.
(j) Strya, S.; Melaimi, M.; Moore, C. E.; Rheingold, A. L.; Augen-
stein, T.; Breher, F.; Bertrand, G. Chem. Eur. J. 2015, 21, 8441–8446.
(k) Munz, D.; Chu, J.; Melaimi, M.; Bertrand, G. Angew. Chem. Int.
Ed. 2016, 55, 12886–12890. (l) Li, Y.; Mondal, K. C.; Samuel, P. P.;
Zhu, H.; Orben, C. M.; Panneerselvam, S.; Dittrich, B.; Schwederski,
B.; Kaim, W.; Mondal, T.; Koley, D.; Roesky, H. W. Angew. Chem.
Int. Ed. 2014, 53, 4168–4172. (m) Hansmann, M. M.; Melaimi, M.;
Bertrand, G. J. Am. Chem. Soc. 2017, 139, 15620−15623. (n) Gu, L.;
Zheng, Y.; Haldon, E.; Goddard, R.; Bill, E.; Thiel, W.; Alcarazo, M.
Angew. Chem. Int. Ed. 2017, 56, 8790−8794; with DACs see: (o)
Deardorff, C. L.; Sikma, R. E.; Rhodes, C. P.; Hudnall, T. W. Chem.
Commun. 2016, 52, 9024−9027; for a general overview, see: (p)
Martin, C. D.; Soleilhavoup, M.; Bertrand, G. Chem. Sci. 2013, 4,
3020−3030. (q) Wang, Y.; Robinson G. H. Inorg. Chem. 2011, 50,
12326−12337. (r) Nesterov, V.; Reiter, D.; Bag, P.; Frisch, P.; Holz-
ner, R.; Porzelt, A.; Inoue, S. Chem. Rev. 2018, DOI:
10.1021/acs.chemrev.8b00079. (s) Kim, Y.; Lee, E. Chem. Eur. J.
2018, DOI: 10.1002/chem.201801560.
(14) Balaban, A. T.; Fischer, G. W.; Dinculescu, A.; Koblik, A. V.;
Dorofeendo, G. N.; Mezheritskii, V. V.; Schroth, W. Pyrylium Salts:
Synthesis, Reaction, and Physical Properties. In Advances in Hetero-
cyclic Chemistry; Katritzky, A. R., Ed.; Academic Press: New York,
1982, Suppl.2.
(15) Tripathi, S.; Wintgens, V.; Valat, P.; Toscano, V.; Kossanyi, J.
F.; Bos, F. J. Luminescence 1987, 37, 149.
(16) see for example: (a) Jimenez, D.; Martinez-Manez, R.; Sancenon,
F.; Ros-Lis, J. V.; Benito, A.; Soto, J. J. Am. Chem. Soc. 2003, 125,
9000–9001. (b) Wetzl, B. K.; Yarmoluk, S. M.; Craig, D. B.; Wolf-
beis, O. S. Angew. Chem. Int. Ed. 2004, 40, 5400-5402.
(29) For carbene derived diradicals, see for example: (a) Mondal,
K.C.; Roesky, H. W.; Schwarzer, M.C.; Frenking, G.; Tkach, I.;
Wolf, H.; Kratzert, D.; Herbst-Irmer, R.; Niepötter, B.; Stalke, D.
Angew. Chem. Int. Ed. 2013, 52, 1801–1805. (b) Mondal, K. C.;
Roesky, H. W.; Schwarzer, M. C.; Frenking, G.; Niepötter, B.; Wolf,
H.; Herbst-Irmer, R.; Stalke, D. Angew. Chem. Int. Ed. 2013, 52,
2963−2967 (c) Hansmann, M. M.; Melaimi, M.; Munz, D.; Bertrand,
G. J. Am. Chem. Soc. 2018, 140, 2546−2554. (d) Ghadwal, R. S.;
Rottschafer, D.; Neumann, B.; Stammler, G.; Andrada, D. M. Chem.
Sci. 2018, 9, 4970–4976. (e) Messelberger, J.; Grünwald, A.; Pinter,
P.; Hansmann, M. M.; Munz, D. Chem. Sci. 2018, 9, 6107–6117.
(30) For a review, see: Roy, M. M. D.; Rivard, E. Acc. Chem. Res.
2017, 50, 2017–2025.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(31) Farwaha, H. S.; Bucher, G.; Murphy, J. A. Org. Biomol. Chem.
2013, 11, 8073–8081.
(32) (a) Liske, A; Verlinden, K., Buhl, H.; Schaper, K.; Ganter, C.
Organometallics 2013, 32, 5269–5272. (b) Verlinden, K.; Buhl, H.:
Frank, W.; Ganter, C. Eur. J. Inorg. Chem. 2015, 2416–2425.
(33) For the correlation of the electrochemistry of 2a-2d with the
carbene-phosphinidene 31P NMR shift scale [Back, O.; Henry-
Ellinger, M.; Martin, C. D.; Martin, D.; Bertrand, G. Angew. Chem.
Int. Ed. 2013, 52, 2939.], see Figure S15.
(34) For electrochemical studies on some NHC-iminium salts, see:
Feroci, M.; Chiarotto, I.; D’Anna, F.; Gala, F.; Noto, R.; Ornano, L.;
Zollo, G.; Inesi, A. ChemElectroChem 2016, 1133–1141.
(35) (a) Lavorato, D.; Terlouw, J. K.; Dargel, T. K.; Koch, W.;
McGibbon, G. A.; Schwarz, H. J. Am. Chem. Soc. 1996, 118,
11898−11904. (b) Hata, K.; Segawa, Y.; Itami, K. Chem. Commun.
2012, 48, 6642. (c) For metal complexes, see: Vivancos, A.; Segarra,
(17) Alvaro, M.; Aprile, C.; Benitez, M.; Bourdelande, J. L.; Garcia,
H.; Herance, J. R. Chem. Phys. Lett. 2005, 414, 66.
(18) Detty, M. R.; Merkel, P. B. J. Am. Chem. Soc. 1990, 112, 3845–
3855.
(19) For reviews, see: (a) Miranda, M. A.; Garcia, H. Chem. Rev.
1994, 94, 1063–1089. (b) Romero, N. A.; Nicewicz, D. A. Chem.
Rev. 2016, 116, 10075–10166.
C.;
Albrecht,
M.
Chem.
Rev.
2018,
DOI:
10.1021/acs.chemrev.8b00148
(36) Unfortunately, 77Se-NMR shifts of pyridylidenes are not report-
ed.
(37) Manoj, N.; Ajayakumar, G.; Gopias, K. R.; Suresh, C H. J.
Phys. Chem. A 2006, 110, 11338–11345.
(38) Balaban, A. T.; Sahini, V. E.; Keplinger, E. Tetrahedron 1960, 9,
163–174.
(20) Clennan, E. L.; Liao, C.; Ayokosok, E. J. Am. Chem. Soc. 2008,
130, 7552.
(39) Alfonzo, E.; Alfonso, F. S.; Beeler, A. B. Org. Lett. 2017, 19,
2989-2992.
(40) Lavallo, V.; Canac, Y.; DeHope, A.; Donnadieu, B.; Bertrand, G.
Angew. Chem. Int. Ed. 2005, 44, 7236–7239.
(21) (a) Clennan, E. L.; Warrier, A. K. S. Org. Lett. 2009, 11, 685–
688. (b) El-Idreesy, T. T.; Clennan, E. L. J. Org. Chem. 2011, 76,
7175–7179. (c) El-Idreesy, T. T. Eur. J. Org. Chem. 2012, 4515–
1522.
(22) See for example: El-Idressy, T. T.; Clennan, E. L. Photochem.
Photobiol. Sci. 2010, 9, 796.
(23) Bolag, A.; Mamada, M.; Nishida, J.-i.; Yamashita, Y. Chem.
Mater. 2009, 21, 4350–4352.
(24) Courte, M.; Alaaeddine, M.; Barth, V.; Tortech, L.; Fichou, D.
Dyes and Pigments 2017, 141, 487–492.
(25) For the addition of nucleophiles to the 4-position of pyrylium
compounds, see for example: (a) Balaban, T. S.; Balaban, A. T. Sci-
ence of Synthesis 2003, 14, 152. (b) Caro, B.; Le Poul, P.; Guen, F.
R.-L.; Saillard, J.-Y., Kahlal, C.; Moinet, C.; Le Poul, N.; Vaisser-
mann, J. Tetrahedron 2002, 58, 7519–7530. (c) Krasuski, W.; Regitz,
M. J. Heterocyclic Chem. 1985, 22, 1179.
(26) Lavallo, V.; Canac, Y.; Prasang, C.; Donnadieu, B.; Bertrand, G.
Angew. Chem. Int. Ed. 2005, 44, 5705–5709. For reviews on CAACs,
see: (b) Soleilhavoup, M.; Bertrand, G. Acc. Chem. Res. 2015, 48,
256–266. (c) Roy, S.; Mondal K. C.; Roesky, H. W. Acc. Chem. Res.
2016, 49, 357–369. (d) Melaimi, M.; Jazzar, R.; Soleilhavoup M.;
Bertrand, G. Angew. Chem. Int. Ed. 2017, 56, 10046–10068. (e) Paul,
U. S. D.; Radius, U. Eur. J. Inorg. Chem. 2017, 3362–3375.
(41) In order to reach full reversibility over a longer time frame, it is
necessary to hold the potential longer as a result of diffusion process-
es in the cell setup, see SI. However, the one and two electron oxida-
tions of 2cPh are fully reversible as demonstrated with very slow scan
rates (Figure S12) and repeated scanning (100 scans, see Figure S13).
(42) Perez-Ruiz, R.; Domingo, L. R.; Jimenez, M. C.; Miranda, M. A.
Org. Lett. 2011, 13, 5116–5119.
(43) For photo-excited organic reductants, see for example: (a)
Charad, E.; Schoenebeck, F.; Garnier, J.; Cutulic, S. P. Y.; Zhou, S.;
Murphy, J. A. Angew. Chem. Int. Ed. 2012, 51, 3673. (b) O’Sullivan,
S.; Eswararao, D.; Tuttle, T.; Murphy, J. A. Angew. Chem. Int. Ed.
2014, 53, 474.
(44) Ghosh, I.; Ghosh, T.; Bardagi, J. I.; König, B. Science 2014, 346,
725.
(45) Note, the direct reduction of 3 to 2 is not feasible with a weak
reductant such as triethylamine (irreversible reduction peak at +0.47
V vs Fc/Fc+); see Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996,
96, 877.
(46) Schoenebeck, F.; Murpy, J. A., Zhou, S-z.; Uenoyama, Y.;
Miclo, Y.; Tuttle, T. J. Am. Chem. Soc. 2007, 129, 13368.
ACS Paragon Plus Environment
11