426
ZUEV
for M = Co or Ni and Li1 – xNaxAlO2 was reported and
Li2O
lithium diffusion in γ-LiAlO2 was modeled in works
[26–28]. Thus, apparently, the use of an Al(OH)3 inter-
calation compound in the synthesis facilitates the for-
mation of Li1 + xAl1 – xO2 – x solid solution.
Li3RO4
Li1 + xAl1 – xO2 – x
LiRO3
LiAlO2
ACKNOWLEDGMENTS
The author acknowledges the help of A.I. Kadin in
the experiments.
LiR3O8
Li2Nb28O71
AlNb11O29 R2O5
LiAl5O8
REFERENCES
Al2O3
AlRO4
mol %
1. G. G. Gvelesiani, I. S. Omiadze, A. A. Nadiradze, et al.,
Izv. Akad. Nauk SSSR, Neorg. Mater. 29 (12), 2079 (1989).
2. O. A. Kharlamova, R. P. Mitrofanova, K. A. Tarasov, et al.,
Khim. Interesah Ustoich. Razvit. 12, 383 (2004).
3. I. V. Antsifirova, I. G. Sevast’yanova, and G. A. Fomina,
Ogneupory, No. 11, 8 (1993).
Fig. 1. Subsolidus phase relations in the Al O –Li O–R O
2 5
2
3
2
(R = Ta or Nb) systems at temperatures up to 1000°C.
4. JCPDS-ICDD, Card no. 36-307.
5. JCPDS-ICDD, Card no. 16-459.
6. JCPDS-ICDD, Card no. 20-631.
7. the Phase Diagrams of Refractory Oxide Systems, Vol. 5:
Binary Systems, Ed. by F. Ya. Galakhov (Nauka, Lenin-
grad, 1986), Part 2 [in Russian].
Li2CO3
R2O5
Li3RO4
LiR3O8.
Li2CO3 + R2O5
LiRO3 +
The figure displays the triangulation in the Al2O3–
Li2O–Ta2O5 (Nb2O5) systems. The minor nonstoichi-
ometry of Lií‡é3 and LiNbé3 is not shown in the fig-
ure (which is usual for small homogeneity regions
[22]). The extent of the homogeneity region for these
crystals is not greater than 3 mol % [23, 24]. We have
found a new γ-LiAlO2 base solid solution with the general
formula Li1 + xAl1 – xO2 – x, where x = 0–0.67. Table 2 dis-
plays the unit cell parameters of some Li1 + xAl1 – xO2 – x
solid solution samples. The unit cell parameters
8. I. L. Shukaev, Extended Abstract of Candidate’s Disser-
tation in Chemistry (1996).
9. JCPDS-ICDD, Card no. 17-582.
10. JCPDS-ICDD, Card no. 26-1190.
11. JCPDS-ICDD, Card no. 29-836.
12. JCPDS-ICDD, Card no. 36-1480.
13. V. A. Toropov, I. I. Barzakovskii, V. V. Lapina, and
N. N. Kurtseva, The Phase Diagrams of Silicate Sys-
tems. Handbook, Ed. by V. A. Toropov (Nauka, Lenin-
grad, 1969), Vol. 1 [in Russian].
decrease with increasing x. Let us consider the forma- 14. M. G. Zuev, Zh. Neorg. Khim. 40 (9), 1573 (1995).
15. M. G. Zuev, Zh. Neorg. Khim. 39 (3), 512 (1994).
16. JCPDS-ICDD, Card no. 38-1425.
tion mechanism of the Li1 + xAl1 – xO2 – x solid solution.
Aluminum hydroxide Al(OH)3 has a high selectivity to
intercalation with lithium salts. According to the inter-
calation scheme, lithium salts are first incorporated
between aluminum hydroxide layers, which is followed
by the fixation of lithium cations in the octahedral voids
of these layers [25]. In our case, Li2CO3 is intercalated
into the interlayer spaces of Al(OH)3; likely, aluminum
hydroxide has a certain capacity toward Li2CO3. When
the component ratio is [Li2CO3] : [Al(OH)3] = [1–1.67] :
[1–0.33] and when the batch is annealed at tempera-
tures up to 1000°C, the precursor decomposes and the
crystal structure of a γ-LiAlO2 solid solution is formed.
γ-LiAlO2 can form various solid solutions [26–28].
In particular, the synthesis of LiAlyM1 – yO2 compounds
17. JCPDS-ICDD, Card no. 19-713.
18. W. Stewner and R. Hoppe, Z. Anorg. Allg. Chem. 380,
241 (1971).
19. M. G. Zuev and E. Yu. Zhuravleva, RF Patent
No. 2274605, Byull. Izobret., No. 1120 (2006)[Russ.
Chem. rev. 69 (7), 551(2000)].
20. A. S. Sinitskii, N. N. Oleinikov, G. P. Murav’eva, and
Yu. D. Tret’yakov, Neorg. Mater. 39 (3), 346 (2003).
21. M. G. Zuev, Usp. Khim. 69 (7), 603 (2000) [Russ. Chem.
Rev. 69 (7), 551 (2000)].
22. A. M. Zakharov, The Phase Diagrams of Binary and Ter-
nary Systems (Metallurgiya, Moscow, 1990) [in Russian].
23. E. M. Levin and H. F. McMurdie, Am. Ceram. Soc. Col-
umt, 86 (1975).
24. V. V. Safonov and N. G. Chaban, Zh. Neorg. Khim. 39
(7), 1202 (1994).
25. V. P. Isupov, Zh. Strukt. Khim. 40 (5), 832 (1999).
26. Young-II Jang, Biying Huang, Haifeng Wang, et al.,
J. Power Sources 81–82, 589 (1999).
Table 2. Unit cell parameters for Li1 + xAl1 – xO2 – x solid so-
lution samples
27. J.-P. Jacobs, M. A. san Miguel, L. J. Alvarez, and
P. B. Giral, J. Nucl. Mater. 232 (2–3), 131 (1996).
28. N. B. Smirnov, E. I. Burmakin, S. V. Vazhenova, and
G. Sh. Shekhtman, Elektrokhimiya 38 (5), 608 (2002)
[Russ. J. Elektrochem. 38 (5), (2002)].
x
a, Å
c, Å
0
0.3
0.67
5.171
5.159
5.136
6.284
6.251
6.248
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY Vol. 52 No. 3 2007