P. Das et al. / Tetrahedron Letters 54 (2013) 2924–2928
2927
Table 2 (continued)
Entry
Reactant
Product
CHO
2t
Time
4
Yielda (%)
CH2OH
19
20
94
90
1t
CH2OH
CHO
4
1u
2u
MeO
MeO
CH2OH
CHO
21
22
8
70
20
1v
2v
NO2
NO2
OH
CHO
12
2w
1w
Reaction condition: substrate (1 equiv), solvent (3 mL), catalyst (0.05 mol), Et3N (1.5 equiv) were heated using O2 at 90 °C for appropriate time.
a
Isolated yield after column chromatography.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Uozumi, Y.; Yamada, Y. M. A. Chem. Rec. 2009, 9, 51.
2. Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds;
Academic Press: New York, 1981.
3. Cainelli, G.; Cardillo, G. Chromium Oxidations in Organic Chemistry; Springer:
Berlin, 1984.
4. (a) Ten Brink, G. J.; Arends, I. W. C. E.; Sheldon, R. A. Science 2000, 287, 1636; (b)
Matsumoto, T.; Ueno, M.; Kobayashi, S. Chem. Asian J. 2008, 3, 239; (c) Liu, J.;
Wang, F.; Sun, K.; Xu, X. Adv. Synth. Catal. 2007, 349, 2439.
5. Hasan, M.; Musawir, M.; Davey, P. N.; Kozhevnikov, I. V. J. Mol. Catal. A: Chem.
2002, 180, 77.
6. (a) Miyata, A.; Muratami, M.; Irie, R.; Katsuki, T. Tetrahedron Lett. 2001, 42,
7067; (b) Miyata, A.; Furukawa, M.; Irie, R.; Katsuki, T. Tetrahedron Lett. 2002,
43, 3481.
Figure 4. Recovery and reuse of SS-Rua,b a3-methoxybenzyl alcohol (1 equiv), SS-
,
Ru (0.05 mol), Et3N (1.5 equiv). bConversion was determined on the basis of GC–MS
analysis.
7. (a) Meijer, R. H.; Ligthart, G. B. W. L.; Meuldijk, J.; Vekemans, J. A. J. M.; Hulshof,
L. A.; Mills, A. M.; Kooijman, H.; Spek, A. L. Tetrahedron 2004, 60, 1065; (b)
Dijksman, A.; Arends, I. W. C. E.; Sheldon, R. A. Chem. Commun. 1999, 1591; (c)
Dijksman, A.; Martino-Gonzalez, A.; Mairata, A.; Payeras, I.; Arends, I. W. C. E.;
Sheldon, R. A. J. Am. Chem. Soc. 2001, 123, 6823; (d) Elzinga, A. J. M.; Li, Y.-X.;
Arends, I. W. C. E.; Sheldon, R. A. Tetrahedron Asymmetry 2002, 13, 879; (e)
Takahashi, M.; Oshima, K.; Matsubara, S. Tetrahedron Lett. 2003, 44, 9201.
8. Yamaguchi, K.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc.
2000, 122, 7144.
9. Choi, E.; Lee, C.; Na, Y.; Chang, S. Org. Lett. 2002, 4, 2369.
10. Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2002, 41, 4538.
11. Mori, S.; Takubo, M.; Makida, K.; Yanase, T.; Aoyagi, S.; Maegawa, T.; Monguchi,
Y.; Sajiki, H. Chem. Commun. 2009, 5159.
12. Zhan, B. Z.; White, M. A.; Sham, T. K.; Pinock, J. A.; Doucet, R. J.; Rao, K. V. R.;
Robertsin, K. N.; Camerson, T. S. J. Am. Chem. Soc. 2003, 125, 125.
13. Kantam, M. L.; Pal, U.; Sreedhar, B.; Bhargava, S.; Iwasawa, Y.; Tada, M.;
Choudary, B. M. Adv. Synth. Catal. 2008, 350, 1225.
14. (a) Akiyama, R.; Kobayashi, S. J. Am. Chem. Soc. 2003, 125, 3412; (b) Okamoto,
K.; Akiyama, R.; Kobayashi, S. J. Org. Chem. 2004, 69, 2871; (c) Kobayashi, S.;
Miyamura, H.; Akiyama, R.; Ishida, T. J. Am. Chem. Soc. 2005, 127, 9251.
15. Matsumoto, T.; Ueno, M.; Kobayashi, J.; Miyamura, H.; Mori, Y.; Kobayashi, S.
Adv. Synth. Catal. 2007, 349, 531.
Recovery of the catalyst was done by filtration and washing
with water, acetone and then dried under reduced pressure. The
catalyst so obtained could be reused without any activation. More-
over, the reused SS-Ru catalyst exhibit similar efficiency for oxida-
tion reaction, which was confirmed by the example of oxidation of
3-methoxybenzyl alcohol (Fig. 4). Upto seven cycles, minor loss of
product yields 2–5% were observed.
Also the reaction mixture showed no further conversion on
removing the catalyst from the system, indicating that metal is
not leaching from supports.
In summary, we have developed active and environmentally
sustainable immobilized ruthenium nanoparticles (SS-Ru) as het-
erogeneous catalyst. This catalyst has been utilized successfully
in an aerobic oxidation of benzylic and allylic alcohols to corre-
sponding carbonyls with high efficiency, selectivity, and reusabil-
ity. Use of milder base, oxygen as an inexpensive primary
oxidant and water as the only by product, highlights the environ-
mentally benign green chemical aspect of the present process.
16. Zhan, B. Z.; Mary Anne White, M. A.; Tsun-Kong Sham, T. K.; James, A.; Pincock,
J. A.; Doucet, R. J.; Ramana Rao, K. V.; Robertson, K. N.; Cameron, T. S. J. Am.
Chem. Soc. 2003, 125, 2195.
17. Kobayashi, S.; Miyamura, H.; Akiyama, R.; Ishida, T. J. Am. Chem. Soc. 2005, 127,
9251.
18. Muller, P.; Godoy, J. Tetrahedron Lett. 1981, 22, 2361.
19. Hu, Z.; Hongxia Du, H.; Chi-Fai Leung, C. F.; Liang, H.; Lau, T. C. Ind. Eng. Chem.
Res. 2011, 50, 12288.
Acknowledgments
20. (a) Das, P.; Sharma, D.; Shil, A. K.; Kumari, A. Tetrahedron Lett. 2011, 52, 1176;
(b) Bandana, C.; Aggarwal, N.; Das, P. Tetrahedron Lett. 2011, 52, 4954; (c) Shil,
A. K.; Sharma, D.; Guha, N. R.; Das, P. Tetrahedron Lett. 2012, 53, 4858–4861; (d)
Bandna, C.; Guha, N. R.; Shil, A. K.; Sharma, D.; Das, P. Tetrahedron Lett. 2012, 53,
5318; (e) Guha, N. R.; Reddy, C. B.; Aggarwal, N.; Sharma, D.; Shil, A. K.; Bandna,
C.; Das, P. Adv. Synth. Catal. 2012, 354, 2911; (f) Sharma, D.; Kumar, S.; Shil, A.
K.; Guha, N. R.; Bandna, C.; Das, P. Tetrahedron Lett. 2012, 53, 7044.
21. Nandanwar, S. U.; Chakraborty, M.; Mukhopadhyay, S.; Shenoy, K. T. Cryst. Res.
Technol. 2011, 46, 393.
Authors are grateful to Dr. P.S. Ahuja, Director IHBT and the
Department of Biotechnology for providing necessary facilities
during the course of the work. We gratefully acknowledge financial
assistance from the Department of Science & Technology (Nano
Mission), New Delhi (Grant No. SR/NM/NS-95/2009). N.A. (SRF)
and N.R.G. (SRF) thank the CSIR and the UGC, New Delhi for award-
ing fellowships.