C O M M U N I C A T I O N S
teristic PL emission spectrum of MEH-PPV (λem ) 585 nm, λex
)
507 nm) is strongly quenched (93%) in the bilayer structure with
the P1 layer (40 nm). These results clearly indicate that the electron
transfer occurs from the MEH-PPV (EA/IP ) 2.9/5.1 eV)8,10 to
the P1 (EA/IP ) 4.0/6.6 eV). Preliminary studies on bilayer organic
photovoltaic devices between P1 and poly(3-hexyl thiophene) gave
large open circuit voltages (Voc ) 1.2 V) but low short circuit
currents (7 µA/cm2). Field effect transistor devices of P1 were
investigated in air, and n-type behaviors with mobilities of 0.24
cm2/(V s) at gate voltages of 5-15 V and 3.4 cm2/(V s) for gate
voltages of 15-20 V were observed (Figure S10). Significant
experimentation is needed to understand the role of counterions in
these applications.
In conclusion, we report a promising class of water and/or
methanol soluble electron-accepting (n-type) conjugated polymers.
These materials display high EAs, reversible redox behavior, high
conductivities, good electron mobilities, and efficient quenching
of donor polymers.
Acknowledgment. This work was supported by the National
Science Foundation DMR-0706408 and TORAY Industries. The
authors thank Dr. Changsik Song and Dr. Moon-Ho Ham for
technical discussions.
Figure 1. (a) UV-vis absorption spectra of P1-3; thin films (continuous
line), water or methanol solutions (dashed line). (b) PL emission spectra of
P1-3 in water or methanol solutions. (c) Cyclic voltammogram, in situ
conductivity measurement. (d) Spectroelectrochemistry of P1 thin film.
Supporting Information Available: Experimental details and
characterization of the products. This material is available free of charge
References
(1) (a) Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. ReV. 2007, 107,
1324. (b) Thompson, B. C.; Freche´t, J. M. J. Angew. Chem., Int. Ed. 2008,
47, 58.
(2) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int. Ed. 1998,
37, 402.
(3) (a) Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Angew.
Chem., Int. Ed. 2008, 47, 4070. (b) Murphy, A. R.; Freche´t, J. M. J. Chem.
ReV. 2007, 107, 1066.
Figure 2. (a) UV-vis absorption and (b) PL emission spectra (λex ) 507
nm) of thin films of MEH-PPV, P1, and a bilayer of MEH-PPV/P1.
(4) (a) McCullough, R. D. AdV. Mater. 1998, 10, 93. (b) McCulloch, I.; Heeney,
M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe,
D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.;
McGehee, M. D.; Toney, M. F. Nat. Mater. 2006, 5, 328. (c) Usta, H.; Lu,
G.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2006, 128, 9034.
(5) (a) Babel, A.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13656. (b)
Zhan, X.; Tan, Z.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.;
Zhu, D.; Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007, 129, 7246.
(c) Letizia, J. A.; Salata, M. R.; Tribout, C. M.; Facchetti, A.; Ratner, M. A.;
Marks, T. J. J. Am. Chem. Soc. 2008, 130, 9679. (d) Usta, H.; Facchetti,
A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 8580.
to reduce with THF solutions of Na+-naphthalide. Less than optimal
redox states and decreased film quality from the solvent exposure
resulted in σ ) 1.1 S/cm, which is lower than our in situ
determination. The maximum in situ conductivities of P3 (σmax
)
160 S/cm) rivals values observed of well-known p-type poly(3-
alkyl thiophene)s, and P2 exhibits σmax ) 9 S/cm. The in situ
conductivity profile indicates that the ‘mixed valence’ state is
conductive and that the neutral (fully reduced) material is insulat-
ing.12 We investigated the reduction of P1 thin films deposited onto
ITO-coated glass electrodes by spectroelectrochemistry (Figure 1d).
The absorption spectra show a decrease of the original band gap
transition and the buildup of intragap energy states, which matches
well to the negative polaron-bipolaron model for charge delocal-
ized π-platforms.16
Optical absorption and photoluminescence (PL) spectra of thin
films of MEH-PPV, P1, and a MEH-PPV/P1 bilayer are shown in
Figure 2. It is noteworthy that high quality bilayer films can be
obtained by coating a water solution of P1 on the top of an MEH-
PPV thin film prepared from the chloroform solution, since MEH-
PPV neither dissolves nor swells in water. The absorption spectrum
of bilayer heterojunction is a superposition of those of the two
polymer layers, indicating no detectable ground state interaction
at the heterojunction interface. Figure 2b shows how the charac-
(6) (a) Granstrom, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.;
Friend, R. H. Nature (London) 1998, 395, 257. (b) Jenekhe, S. A.; Yi, S.
Appl. Phys. Lett. 2000, 77, 2635. (c) Kietzke, T.; Egbe, D. A. M.; Hrhold,
H.-H.; Neher, D. Macromolecules 2006, 39, 4018.
(7) (a) Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater.
2004, 16, 4556, and references therein. (b) Zhu, Y.; Yen, C.-T.; Jenekhe.,
S. A.; Chen, W.-C. Macromol. Rapid Commun. 2004, 25, 1829.
(8) While an EA of 4.0 eV has been reported for BBL, it is noteworthy that
BBL was processed by a strong acid, rather than common solvents: Alam,
M. M.; Jenekhe., S. A. Chem. Mater. 2004, 16, 4647.
(9) (a) Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992,
258, 1474. (b) Alam, M. M.; Jenekhe, S. A J. Phys. Chem. B 2001, 105,
2479.
(10) Li, Y.; Cao, Y.; Gao, J.; Wang, D.; Yu, G.; Heeger, A. J. Synth. Met. 1999,
99, 243.
(11) Michaelis, M.; Hill, E. S. J. Gen. Physiol. 1933, 16, 859.
(12) See the Supporting Information.
(13) Zhang, S.-W.; Swager, T. M. J. Am. Chem. Soc. 2003, 125, 3420.
(14) Li, Y.; Ding, J.; Day, M.; Tao, Y.; Lu, J.; D’iorio, M. Chem. Mater. 2004,
16, 2165.
(15) Kittlesen, G. P.; White, H. S.; Wrighton, M. S. J. Am. Chem. Soc. 1984,
106, 7389.
(16) (a) Bredas, J. L.; Street, G. B. Acc. Chem. Res. 1985, 18, 309. (b) Heeger,
A. J.; Kivelson, S.; Schrieffer, J. R.; Su, W.-P. ReV. Mod. Phys. 1988, 60,
781.
JA906513U
9
J. AM. CHEM. SOC. VOL. 131, NO. 49, 2009 17725