162112-3
Chen et al.
Appl. Phys. Lett. 95, 162112 ͑2009͒
3I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, Phys.
4L. Colakerol, T. D. Veal, H. K. Jeong, L. Plucinski, A. DeMasi, T. Lear-
month, P. A. Glans, S. Wang, Y. Zhang, L. F. J. Piper, P. H. Jefferson, A.
Fedorov, T. C. Chen, T. D. Moustakas, C. F. McConville, and K. E. Smith,
Recently, the ultrahigh-gain transport has also been ob-
served in the wide-bandgap semiconducting NWs of GaN29
and ZnO.30 Soci et al. reported a maximal ⌫ value of 2
ϫ108 for a ZnO NW with the same l at 2 m at higher F of
2.5ϫ104 V/cm.30 Under the same applied field, the ⌫ of the
InN NWs can easily reach ͑4Ϯ2͒ϫ109, which is even
higher than that of ZnO NWs. Moreover, the GaN and ZnO
NWs have two different high-gain ͑long lifetime͒ mecha-
nisms. Photoconduction of GaN NW is dominated by the
electron-hole spatial separation induced by strong surface
band bending.29,31 However, the oxide NWs usually follow a
molecular sensitization mechanism similar to a hole-trapping
effect.30 InN with a well-known surface electron accumula-
tion in nature is totally different from the electron depletion
of surface in ordinary n-type semiconductors, such as GaN
and ZnO systems. Further studies suggest that the photocur-
rent in InN NWs is sensitive to the oxygen environment ͑not
shown here͒ and its PC could be surface dominant and fol-
lows a similar mechanism of molecular sensitization. The
excitation of electron from surface state created by foreign
oxygen molecule could give rise to a similar effect as inter-
band excitation since the lifetime of photoelectron is also
determined by the readsorption rate of oxygen.
In addition, the intrinsic types of unintentional doping or
defects presented in this work are likely to be different from
our previous reports10 due to the different processes in pro-
ducing these NWs. The MOCVD approach seems to favor
the NWs with lower conductivity and semiconducting na-
ture. The reason underneath the process-dependent electronic
behavior is still not very clear. Usually, lower conductivity
could imply higher crystalline quality, less donor defects, and
compensation of acceptor defects in this intrinsic n-type
semiconductor. The potential existence of acceptor states in
the InN has been widely proposed for the explanation of
quired to clarify the origins of the semiconducting transport
in the InN NWs.
5S. Lazic, E. Gallardo, J. M. Calleja, F. Agulló-Rueda, J. Grandal, M. A.
Sánchez-Garcia, E. Calleja, E. Luna, and A. Trampert, Phys. Rev. B 76,
205319 ͑2007͒.
6V. Cimalla, B. Pradarutti, G. Matthäus, C. Brückner, S. Riehemann, G.
Notni, S. Nolte, A. Tünnermann, V. Lebedev, and O. Ambacher, Phys.
92, 212102 ͑2008͒.
8K. R. Wang, S. J. Lin, L. W. Tu, M. Chen, Q. Y. Chen, T. H. Chen, M. L.
Chen, H. W. Seo, N. H. Tai, S. C. Chang, I. Lo, D. P. Wang, and W. K.
9T. Tang, S. Han, W. Jin, X. Liu, C. Li, D. Zhang, C. Zhou, B. Chen, J.
10C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and
87, 253103 ͑2005͒.
12C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and
13E. Calleja, J. Grandal, M. A. Sánchez-García, M. Niebelschütz, V. Ci-
͑2007͒.
15C. H. Shen, H. Y. Chen, H. W. Lin, S. Gwo, A. A. Klochikhin, and V. Yu.
16T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, and H. Luth,
17S. Vaddiraju, A. Mohite, A. Chin, M. Meyyappan, G. Sumanasekera, B.
W. Alphenaar, and M. K. Sunkara, Nano Lett. 5, 1625 ͑2005͒.
18B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B.
Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, Phys. Rev. B
69, 115216 ͑2004͒.
19B. Polyakov, B. Daly, J. Prikulis, V. Lisauskas, B. Vengalis, M. A. Morris,
20N. P. Kobayashi, V. J. Logeeswaran, M. Saif Islam, X. Li, J. Straznicky, S.
͑2007͒.
22P. Bhattacharya, Semiconductor Optoelectronic Devices ͑Prentice-Hall,
New Jersey, 1997͒.
24M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame,
In conclusion, the PC of the semiconducting InN NWs
with ultrahigh photocurrent gain has been investigated. The
photosensitivity for the IR illumination can be significantly
enhanced at low temperature due to the reduction in thermal
current and an increase in the photocurrent. The preliminary
results demonstrate the potential application as an efficient
IR sensing material using the InN nanostructure. The mecha-
nism leading to the high-gain transport is still needed to be
elaborated.
27G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem,
28G. Konstantatos, L. Levina, A. Fischer, and E. H. Sargent, Nano Lett. 8,
1446 ͑2008͒.
29R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and
30C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y.
Bao, Y. H. Lo, and D. Wang, Nano Lett. 7, 1003 ͑2007͒.
31R. S. Chen, S. W. Wang, Z. H. Lan, J. T. H. Tsai, C. T. Wu, L. C. Chen, K.
H. Chen, Y. S. Huang, and C. C. Chen, Small 4, 925 ͑2008͒.
32A. A. Klochikhin, V. Yu. Davydov, V. V. Emtsev, A. V. Sakharov, V. A.
Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, Phys. Rev. B 71,
195207 ͑2005͒.
This research was financially supported by Ministry of
Education and National Science Council of Taiwan. Techni-
cal support from Academia Sinica Research Project on Nano
Science and Technology is gratefully acknowledged.
33W. H. Chang, W. C. Ke, S. H. Yu, L. Lee, C. Y. Chen, W. C. Tsai, H. Lin,
͑2008͒.
1W. Walukiewicz, J. W. Ager III, K. M. Yu, Z. Liliental-Weber, J. Wu, S. X.
͑2006͒.
34D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, and Z. Liliental-Weber, Appl.
2S. K. O’Leary, B. E. Foutz, M. S. Shur, and L. F. Eastman, Appl. Phys.
131.94.16.10 On: Mon, 22 Dec 2014 00:58:39