Inorganic Chemistry
Article
(
14) Liao, J.-H.; Marking, G. M.; Hsu, K. F.; Matsushita, Y.; Ewbank,
CONCLUSION
A new series of IR NLO material Li In MQ (M = Si, Ge; Q =
S, Se) have been synthesized for the first time. They adopt the
■
M. D.; Borwick, R.; Cunningham, P.; Rosker, M. J.; Kanatzidis, M. G. J.
Am. Chem. Soc. 2003, 125, 9484−9493.
(
2
2
6
15) Guo, S. P.; Guo, G. C.; Wang, M. S.; Zou, J. P.; Xu, G.; Wang,
Cd GeS structure type and crystallize in the noncentrosym-
4
6
G. J.; Long, X. F.; Huang, J. S. Inorg. Chem. 2009, 48, 7059−7065.
(16) Banerjee, S.; Malliakas, C. D.; Jang, J. I.; Ketterson, J. B.;
Kanatzidis, M. G. J. Am. Chem. Soc. 2008, 130, 12270−12272.
(17) Chung, I.; Song, J. H.; Jang, J. I.; Freeman, A. J.; Ketterson, J. B.;
Kanatzidis, M. G. J. Am. Chem. Soc. 2009, 131, 2647−2656.
metric space group Cc. The LiQ , InQ , and MQ (M = Si, Ge;
Q = S, Se) tetrahedra are connected to each other by corner-
sharing to generate a three-dimensional framework. Li In MQ
6
M = Si, Ge; Q = S, Se) exhibit SHG responses at 2 μm that are
approximately close to those of benchmark AgGaQ (Q = S,
4
4
4
2
2
(
(
18) Bai, L.; Lin, Z.; Wang, Z.; Chen, C.; Lee, M. H. J. Chem. Phys.
004, 120, 8772−8778.
19) Bai, L.; Lin, Z.; Wang, Z.; Chen, C. J. Appl. Phys. 2008, 103,
83111/1−083111/6.
20) SAINT, version 7.60A; Bruker Analytical X-ray Instruments,
Inc.: Madison, WI, 2008.
21) Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112−122.
(22) Gelato, L. M.; Parthe,
2
2
(
0
(
Se). Their large band gaps will be very beneficial to increase the
laser-damage threshold and avoid the two-photon absorption of
the conventional 1 μm (Nd:YAG) or 1.55 μm (Yb:YAG) laser
pumping. Moreover, the valuable property of congruent-
melting behavior for all of the four compounds makes it
feasible to grow bulk crystals needed for thorough evaluation
and practical application by the Bridgman−Stockbarger
method. Our preliminary experimental results indicated that
Li In MQ are promising IR NLO materials for practical
(
́
E. J. Appl. Crystallogr. 1987, 20, 139−143.
(23) Kurtz, S. K.; Perry, T. T. J. Appl. Phys. 1968, 39, 3798−3813.
(24) Julien-Pouzol, M.; Jaulmes, S. Acta Crystallogr., Sect. C 1995, 51,
966−1968.
1
(
2
2
6
25) Kish, Z. Z.; Kanishcheva, A. S.; Mikhailov, Yu. N.; Lazarev, V. B.;
application. Further research is in progress.
Semrad, E. E.; Peresh, E. Yu. Dokl. Akad. Nauk SSSR 1985, 280, 398−
01.
26) Eisenmann, B.; Hofmann, A. Z. Anorg. Allg. Chem. 1990, 580,
4
(
ASSOCIATED CONTENT
Supporting Information
Crystallographic file in CIF format for Li In MQ (M = Si, Ge;
■
*
S
1
51−159.
2
2
6
(27) Mei, D.; Lin, Z.; Bai, L.; Yao, J.; Fu, P.; Wu, Y. J. Solid State
Chem. 2010, 183, 1640−1644.
(28) Pobedimskaia, E. A.; Alimova, L. L.; Belov, N. V.; Badikov, V. V.
Dokl. Akad. Nauk SSSR 1981, 257, 611−614.
(
29) Beister, H. J.; Ves, S.; Ho
Rev. B 1991, 43, 9635−9642.
30) Olekseyuk, I. D.; Sachanyuk, V. P.; Parasyuk, O. V. J. Alloys
̈
̈
nle, W.; Syassen, K.; Kuhn, G. Phys.
AUTHOR INFORMATION
■
(
*
Compd. 2006, 414, 73−77.
(31) Krykhovets, O. V.; Sysa, L. V.; Olekseyuk, I. D.; Glowyak, T. J.
Alloys Compd. 1999, 287, 181−184.
Notes
The authors declare no competing financial interest.
(
32) Schevciw, O.; White, W. B. Mater. Res. Bull. 1983, 18, 1059−
1
068.
33) Rotermund, F.; Petrov, V.; Noack, F.; Isaenko, L.; Yelisseyev, A.;
Lobanov, S. Appl. Phys. Lett. 2001, 78, 2623−2625.
ACKNOWLEDGMENTS
■
(
This research was supported by the National Basic Research
Project of China (Grant 2010CB630701), National Natural
Science Foundation of China (Grant 51072203), and the
Scientific Research Foundation for the Returned Overseas
Chinese Scholars, State Education Ministry.
REFERENCES
■
(
1) Chemla, D. S.; Kupecek, P. J.; Robertson, D. S.; Smith, R. C. Opt.
Commun. 1971, 3, 29−31.
(
2) Boyd, G. D.; Kasper, H. M.; McFee, J. H.; Storz, F. G. IEEE J.
Quantum Electron. 1972, 8, 900−908.
3) Boyd, G. D.; Buehler, E.; Storz, F. G. Appl. Phys. Lett. 1971, 18,
(
3
(
(
01−304.
4) Schunemann, P. G. AIP Conf. Proc. 2007, 916, 541−559.
5) Mei, D.; Yin, W.; Feng, K.; Lin, Z.; Bai, L.; Yao, J.; Wu, Y. Inorg.
Chem. 2012, 51, 1035−1040.
6) Bera, T. K.; Song, J. H.; Freeman, A. J.; Jang, J. I.; Ketterson, J. B.;
Kanatzidis, M. G. Angew. Chem., Int. Ed. 2008, 47, 7828−7832.
7) Isaenko, L.; Vasilyeva, I.; Merkulov, A.; Yelisseyev, A.; Lobanov,
(
(
S. J. Cryst. Growth 2005, 275, 217−223.
(
8) Lin, X.; Zhang, G.; Ye, N. Cryst. Growth Des. 2009, 9, 1186−1189.
(
9) Yao, J.; Mei, D.; Bai, L.; Lin, Z.; Yin, W.; Fu, P.; Wu, Y. Inorg.
Chem. 2010, 49, 9212−9216.
10) Mei, D.; Yin, W.; Bai, L.; Lin, Z.; Yao, J.; Fu, P.; Wu, Y. Dalton
Trans. 2011, 40, 3610−3615.
11) Kim, Y.; Seo, I. S.; Martin, S. W.; Baek, J.; Halasyamani, P. S.;
Arumugam, N.; Steinfink, H. Chem. Mater. 2008, 20, 6048−6052.
12) Geng, L.; Cheng, W.-D.; Lin, C.-S.; Zhang, W.-L.; Zhang, H.;
He, Z.-Z. Inorg. Chem. 2011, 50, 5679−5686.
13) Chen, M.-C.; Li, L.-H.; Chen, Y.-B.; Chen, L. J. Am. Chem. Soc.
011, 133, 4617−4624.
(
(
(
(
2
5
843
dx.doi.org/10.1021/ic300373z | Inorg. Chem. 2012, 51, 5839−5843