C O M M U N I C A T I O N S
Figure 2. (a) HRTEM micrograph showing a small ReO2 particle encapsulated by spheroidal ReS2 layers. The 0.29 nm lattice fringes (inset) correspond
to ReO2 {111} planes. (b) HRTEM micrograph showing a large amorphous or polycrystalline ReOx particle encapsulated by spheroidal ReS2 layers. (c)
EDX spectrum from (b). Inset: ReOx-ReS2 interface region. A small void is labeled (V), while the arrow depicts a layer dislocation.
such structures has been attributed to the Re4 parallelogram
structural units, which represents the first example of a nonhex-
agonal-based layer structure forming inorganic fullerenes.
Acknowledgment. K.S.C. and J.S. wish to thank the Royal
Society for University Research Fellowships and financial support.
M.T. and H.T. thank CONACyT-Mexico, Millennium Initiative
(grant 8001-W).
Supporting Information Available: XRD powder patterns calcu-
lated for idealized P63/mmc and P-1 ReS2 and observed experimental
XRD powder pattern for partially sulfidized ReO2 (PDF). This material
References
(1) Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E.
Nature (London) 1985, 318, 162-163.
(2) (a) Iijima, S. Nature 1991, 354, 56-58. (b) Iijima, S.; Ichihashi, T. Nature
1993, 363, 603-605. (c) Bethune, D. S.; Kiang, C. H.; DeVries, M. S.;
Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605-
607.
Figure 3. (a) Minimum energy calculation of a zigzag (20,0) ReS2 nanotube
exhibiting a 36 Å internal diameter (side and top view). (b) HRTEM
micrographs showing a hollow ReS2 IF tubule-like structure. (c) HRTEM
micrographs showing an elongated ReS2 nanoparticle formed around an
ReOx encapsulate of similar morphology.
(3) (a) Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Nature 1992, 360, 444-
446. (b) Frey, G. L.; Tenne, R.; Matthews, M. J.; Dresselhaus, M. S.;
Dresselhaus, G. J. Mater. Res. 1998, 13, 2412-2417. (c) Frey, G. L.;
Elani, S.; Homyonfer, M.; Feldman, Y.; Tenne, R. Phys. ReV. B 1998,
57, 6666-6671. (d) Hershfinkel, M.; Gheber, L. A.; Volterra, V.;
Hutchison, J. L.; Margulis, L.; Tenne, R. J. Am. Chem. Soc. 1994, 116,
1914-1917. (e) Rapoport, L.; Bilik, Y.; Feldman, Y.; Homyonfer, M.;
Cohen, S. R.; Tenne, R. Nature 1997, 387, 791-793. (f) Homyonfer,
M.; Mastai, Y.; Hershfinkel, M.; Volterra, V.; Hutchison, J. L.; Tenne,
R. J. Am. Chem. Soc. 1996, 118, 7804-7808. (g) Margulis, L.; Salitra,
G.; Tenne, R.; Talianker, M. Nature 1993, 365, 113-114. (h) Feldman,
Y.; Wasserman, E.; Srolovitz, D. J.; Tenne, R. Science 1995, 267, 222-
225. (i) Homyonfer, M.; Alperson, B.; Rosenberg, Y.; Sapir, L.; Cohen,
S. R.; Hodes, G.; Tenne, R. J. Am. Chem. Soc. 1997, 119, 2693-2698.
(4) (a) Rosenfeld Hacohen, Y.; Grunbaum, E.; Tenne, R.; Sloan, J.; Hutchison,
J. L. Nature 1998, 395, 336-337. (b) Popovitz-Biro, R.; Twersky, A.;
Rosenfeld Hacohen, Y.; Tenne, R. Isr. J. Chem. 2001, 41, 7-14. (c) Avivi,
S.; Mastai, Y.; Gedanken, A. J. Am. Chem. Soc. 2000, 122, 4331-4334.
(5) (a) Hoyer, P. AdV. Mater. 1996, 8, 857-859. (b) Muhr, H.-J.; Krumeich,
F.; Schonholzer, U. P.; Bieri, F.; Niederberger, M.; Gauckler, L. J.; Nesper,
R. AdV. Mater. 2000, 12, 231-234.
powder patterns obtained from partially sulfidized ReO2 particles
confirmed that this sulfide material was derived from P-1 ReS2
(see Supporting Information).
In the HRTEM, the obtained ReS2 layers are visible as dark 0.61
9
nm lattice fringes corresponding to the (100) plane of ReS2 and,
in general, displayed extremely smooth curvature with few sharp
disclinations, suggesting this originated from the bending of the
ReS2 layers rather than from the incorporation of defects which
tend to produce much more angular curvature in IF-like nano-
particles.7b Increasing the time of the sulfidization step resulted in
complete consumption of the oxide core and the formation of hollow
ReS2 IF cages.
The size and morphology of the obtained encapsulates were
determined by the comparative size and morphologies of the
precursor particles, and as the majority of the precursor particles
exhibited spheroidal shapes, the IF nanoparticles tended to be
spheroidal. Minimum energy calculations based on the minimization
of a cohesive energy function parametrized for ReS2 using a
conjugate gradient indicate that ReS2 nanotubes constitute feasible
metastable states (Figure 3a), and a few nanotubule-like structures
were observed (Figure 3b and c), although these were fewer than
5% of the total products. A similar approach has been used to
generate the unit cells of MoS2 and WS2 nanotubes.6a
(6) (a) Seifert, G.; Terrones, H.; Terrones, M.; Frauenheim, T. Solid State
Commun. 2000, 115, 635-638. (b) Nath, M.; Rao, C. N. R. J. Am. Chem.
Soc. 2001, 123, 4841-4842. (c) Zhu, Y. Q.; Hsu, W. K.; Terrones, M.;
Firth, S.; Grobert, N.; Clark, R. J. H.; Kroto, H. W.; Walton, D. R. M. J.
Chem. Soc., Chem. Commun. 2001, 121-122. (d) Nath, M.; Mukho-
padhyay, K.; Rao, C. N. R. Chem. Phys. Lett. 2002, 352, 163-168.
(7) (a) Siefert, G.; Ko¨hler, T.; Tenne, R. J. Phys. Chem. B 2002, 106, 2497-
2501. (b) Tenne, R. AdV. Mater. 1995, 7, 695-672.
(8) (a) Lamfers, H.-J.; Meetsma, A.; Wiegers, G. A.; de Boer, J. L. J. Alloys
Compd. 1996, 341, 34-39. (b) Fang, T. M.; Wiegers, Haas, C.; de Groot,
R. A. J. Phys.: Condens. Matter 1997, 9, 4411-4424. (c) Ho, C H.;
Huang, Y. S.; Chen, J. L.; Dann, T. E.; Tiong, K. K. Phys. ReV. B 1999,
60, 15766-15771.
(9) Almond, M. J.; Ogden, J. S.; Orrin, R. H. High Temp. Mater. Sci. 1996,
35, 21-29.
In conclusion, we have demonstrated the synthesis of the first
ReS2 inorganic fullerene structures. The ability of ReS2 to form
JA0261630
9
J. AM. CHEM. SOC. VOL. 124, NO. 39, 2002 11581