Organic Letters
Letter
isocyanides as electron acceptors will open new avenues for
their applications in photochemical transformations. Further
effort on the reaction mechanism is underway.
Scheme 5. Control Experiments
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Full experimental details and characterization data for all
Accession Codes
Scheme 6. Proposed Mechanism for the Formation of 4
lographic data for this paper. These data can be obtained free of
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We gratefully acknowledge the National Natural Science
Foundation of China (21772062, 21602072, 21572078) and
the Anhui Provincial Natural Science Foundation
(1508085QB42) for financial support.
With the assistance of pyridine and H2O, an arylsulfinate anion
can form an EDA complex (I) with isocyanide 3a. The formed
EDA complex I undergoes a SET process upon light excitation
to generate dipolar species II. Subsequent fragmentation of II
produces an oxygen-centered radical A and a radical anion B.
The generated A can resonate with sulfonyl radical A′, which
reacts with the carbon−carbon triple bond of terminal alkyne 2
to afford a vinyl radical D, which is trapped by TEMPO.
Thereafter, an addition of D to the terminal carbon of 3a
generates the imidoyl radical E, which undergoes an intra-
molecular homolytic aromatic substitution to give a radical F.
Then F is oxidized by O2 to form cationic intermediate G and
O2•−. Ultimately, a base-assisted deprotonation yields final
product phenanthridine 4. On the other hand, the generated B′
from B through a resonance can abstract a hydrogen cation to
form an imidoyl radical C, which can store a hydrogen radical.
Under an O2 atmosphere, radical C can be captured by O2•− to
REFERENCES
(1) Arceo, E.; Jurberg, I. D.; Alvarez-Fernan
Nat. Chem. 2013, 5, 750.
(2) (a) Kim, E. K.; Bockman, T. M.; Kochi, J. K. J. Am. Chem. Soc.
1993, 115, 3091. (b) Miyashi, T.; Kamata, M.; Mukai, T. J. Am. Chem.
Soc. 1987, 109, 2780. (c) Lima, C. G. S.; Lima, T. D.; Duarte, M.;
■
́
́
dez, A.; Melchiorre, P.
Jurberg, I. D.; Paixao, M. W. ACS Catal. 2016, 6, 1389. (d) Rosokha, S.
̃
V.; Kochi, J. K. Acc. Chem. Res. 2008, 41, 641.
(3) For selected examples, see: (a) Nappi, M.; Bergonzini, G.;
Melchiorre, P. Angew. Chem., Int. Ed. 2014, 53, 4921. (b) Davies, J.;
Booth, S. G.; Essafi, S.; Dryfe, R. A. W.; Leonori, D. Angew. Chem., Int.
Ed. 2015, 54, 14017. (c) Kandukuri, S. R.; Bahamonde, A.; Chatterjee,
I.; Jurberg, I. D.; Escudero-Adan, E. C.; Melchiorre, P. Angew. Chem.,
Int. Ed. 2015, 54, 1485. (d) Quint, V.; Morlet-Savary, F.; Lohier, J. F.;
−
produce 3a and HO2 .
́
Lalevee, J.; Gaumont, A. C.; Lakhdar, S. J. Am. Chem. Soc. 2016, 138,
A divergent strategy for the highly regio- and stereoselective
synthesis of (E)- and (Z)-C6-(vinyl sulfone)phenanthridines
was developed by a light-controlled three-component reaction
of biaryl isocyanides, alkynes, and arylsulfinic acids via a radical
tandem process under O2 atmosphere. The reaction was driven
by the photochemical activity of the novel electron donor−
acceptor (EDA) complex generated from the reaction of
arylsulfinic acid and biaryl isocyanide in the presence of
pyridine and water. This approach is operationally simple, uses
mild conditions, has a broad substrate scope, and provides good
yields of the desired products. The established new EDA
complexes from arylsulfinate anions as electron donors and
7436. (e) Spell, M. L.; Deveaux, K.; Bresnahan, C. G.; Bernard, B. L.;
Sheffield, W.; Kumar, R.; Ragains, J. R. Angew. Chem., Int. Ed. 2016, 55,
6515. (f) Zhang, J.; Li, Y.; Xu, R.; Chen, Y. Angew. Chem., Int. Ed.
2017, 56, 12619.
(4) (a) Kock, I.; Heber, D.; Weide, M.; Wolschendorf, U.; Clement,
B. J. Med. Chem. 2005, 48, 2772. (b) Abdel-Halim, O. B.; Morikawa,
T.; Ando, S.; Matsuda, H.; Yoshikawa, M. J. Nat. Prod. 2004, 67, 1119.
(c) Park, G. Y.; Wilson, J. J.; Song, Y.; Lippard, S. J. Proc. Natl. Acad.
Sci. U. S. A. 2012, 109, 11987.
(5) For selected examples, see: (a) Tobisu, M.; Koh, K.; Furukawa,
T.; Chatani, N. Angew. Chem., Int. Ed. 2012, 51, 11363. (b) Zhang, B.;
Muck-Lichtenfeld, C.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed.
̈
2013, 52, 10792. (c) Wang, Q.; Dong, X.; Xiao, T.; Zhou, L. Org. Lett.
D
Org. Lett. XXXX, XXX, XXX−XXX