2582
U. Kazmaier et al.
LETTER
(12) Lipshutz, B. H.; Tasler, S.; Chrisman, W.; Spliethoff, B.;
Tesche, B. J. Org. Chem. 2003, 68, 1177.
(13) Frenzer, G.; Maier, W. F. Annu. Rev. Mater. Res. 2006, 36,
281.
(14) Kim, D. K.; Maier, W. F. J. Catal. 2006, 238, 142.
(15) Preparation of Catalysts: The catalysts were prepared by a
modified sol-gel method. The following precursors,
Cu(NO3)2·3H2O, Fe(NO3)3·9H2O, La(NO3)3·6H2O,
Ni(NO3)2·6H2O, and Pd(NO3)2·H2O, were dissolved in
distilled H2O and mixed with ethylene glycol and nitric acid.
The molar ratio was M/H2O/ethylene glycol/HNO3 =
1:40:20:4 (M as the sum of metal ions). The solutions were
dried and calcined in air for 12 h at 80 °C, for 60 h at 105 °C
and for 5 h at 400 °C with a heating rate of 6 °C/ h each. After
calcination the powders were ground and sieved.
(16) Maier, W. F.; Stöwe, K.; Sieg, S. Angew. Chem. Int. Ed.
2007, 46, 6016.
In conclusion we could show that palladium-containing
sol-gel materials are efficient catalysts for Suzuki cou-
plings in water. At least in this solvent, homogeneous
palladium species are responsible for the catalytic acti-
vity. The mixed oxides could be used repeatedly to release
very small amounts of Pd into solution, which very effec-
tively catalyzed the reaction of interest. This raises the
possibility of using the mixed oxides for controlled Pd-re-
lease, which is the subject of additional studies.
Acknowledgment
Financial support by the Deutsche Forschungsgemeinschaft as well
as the Fonds der Chemischen Industrie is gratefully acknowledged.
(17) (a) Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250.
(b) Arvela, R. K.; Leadbeater, L. E. Org. Lett. 2005, 7, 2101.
(18) General Procedure for Suzuki Couplings in EtOH–
Toluene: To a two-phase system of toluene (4 mL), EtOH
(1.3 mL) and 2 M K2CO3 (2 mL), aryl halide (1.0 mmol),
boronic acid (1.1 mmol) and catalyst (for mol% of Pd see
Table 1) were added and the mixture was heated to reflux for
the specified time. After cooling to r.t., H2O was added and
the aqueous layer was extracted with Et2O (3 ×). After
drying (Na2SO4) and evaporation of the solvent, the crude
product was purified by column chromatography (silica gel,
hexanes–EtOAc).
4-Benzyloxy-4¢-methoxybiphenyl (3): According to this
general procedure 3 was obtained from 4-bromoanisole (187
mg) and 4-benzyloxyphenylboronic acid (251 mg) as a white
solid; mp 170 °C. 1H NMR (500 Hz, CDCl3): d = 7.45 (m, 6
H), 7.40 (dd, J = 7.3, 7.7 Hz, 2 H), 7.34 (t, J = 7.3 Hz, 1 H),
7.04 (d, J = 8.7 Hz, 2 H), 6.96 (d, J = 8.7 Hz, 2 H), 5.11 (s,
2 H), 3.85 (s, 3 H). 13C NMR (500 Hz, CDCl3): d = 158.7,
157.9, 137.0, 133.7, 133.4, 128.6, 128.0, 127.7, 127.5,
115.1, 114.2, 70.1, 55.3. Anal. Calcd for C20H18O2 (290.36):
C, 82.73; H, 6.25. Found: C, 82.99; H, 6.45. HRMS: m/z
[M+] calcd for C20H18O2: 290.1307; found: 290.1340.
(19) Shirakawa, E.; Yamasaki, K.; Hiyama, T. Synthesis 1998,
1544.
References and Notes
(1) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(b) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire,
M. Chem. Rev. 2002, 102, 1359. (c) Miyaura, N. Top. Curr.
Chem. 2002, 11. (d) Miyaura, N. In Metal-Catalyzed Cross-
Coupling Reactions, 2nd ed.; de Meijere, A.; Diederich, F.,
Eds.; Wiley-VCH: Weinheim, 2004, 41; and references cited
therein.
(2) (a) Sakurai, H.; Tsukuda, T.; Hirao, T. J. Org. Chem. 2002,
67, 2721. (b) Heiderich, R. G.; Köhler, K.; Krauter, J. G. E.;
Pietsch, J. Synlett 2002, 1118. (c) Conlon, D. A.; Pipik, B.;
Ferdinand, S.; LeBlond, C. R. Jr.; Sowa, J. R.; Izzo, B.;
Collins, P.; Ho, G.-J.; Williams, J. M.; Shi, Y.-J.; Sun, Y.
Adv. Synth. Catal. 2003, 345, 931. (d) Lysen, M.; Köhler,
K. Synthesis 2006, 692. (e) Seki, M. Synthesis 2006, 2975.
(f) Felpin, F.-X.; Ayad, T.; Mitra, S. Eur. J. Org. Chem.
2006, 2679; and references cited therein.
(3) (a) Bulut, H.; Artok, L.; Yilmaz, S. Tetrahedron Lett. 2003,
44, 289. (b) Artok, L.; Bulut, H. Tetrahedron Lett. 2004, 45,
3881.
(4) Shimizu, K.; Maruyama, R.; Komai, S.; Kodama, T.;
Kitayama, Y. J. Catal. 2004, 227, 202.
(5) (a) Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam,
M. L.; Sreedhar, B. J. Am. Chem. Soc. 2002, 124, 14127.
(b) Kantam, M. L.; Subhas, M. S.; Roy, S.; Roy, M. Synlett
2006, 633.
(6) (a) Kabalka, G. W.; Pagni, R. M.; Hair, C. M. Org. Lett.
1999, 1, 1423. (b) Kantam, M. L.; Roy, S.; Roy, M.;
Sreedhar, B.; Choudary, B. M. Adv. Synth. Catal. 2005, 347,
2002. (c) Cwik, A.; Hell, Z.; Figueras, F. Org. Biomol.
Chem. 2005, 3, 4307.
(7) (a) Davies, I. W.; Matty, L.; Hughes, D. L.; Reider, P. J. J.
Am. Chem. Soc. 2001, 123, 10139. (b) Prockl, S. S.; Kleist,
W.; Gruber, M. A.; Köhler, K. Angew. Chem. Int. Ed. 2004,
43, 1881. (c) Phan, N. T. S.; van der Sluys, M.; Jones, C. W.
Adv. Synth. Catal. 2006, 348, 609. (d) Yin, L.; Liebscher, J.
Chem. Rev. 2007, 107, 133; and references cited therein.
(8) (a) Biffis, A.; Zecca, M.; Basato, M. Eur. J. Inorg. Chem.
2001, 1131. (b) Na, Y.; Park, S.; Han, S. B.; Han, H.; Ko, S.;
Chang, S. J. Am. Chem. Soc. 2004, 126, 250. (c) Jaska, C.
A.; Manners, I. J. Am. Chem. Soc. 2004, 126, 9776.
(9) Smith, M. D.; Stepan, A. F.; Ramarao, C.; Brennan, P. E.;
Ley, S. V. Chem. Commun. 2003, 2652.
(10) Nishihata, Y.; Mizuki, J.; Akao, T.; Tanaka, H.; Uenishi, M.;
Kimura, M.; Okamoto, T.; Hamada, N. Nature (London)
2002, 418, 164.
(11) Andrews, S. P.; Stepan, A. F.; Tanaka, H.; Ley, S. V.; Smith,
M. D. Adv. Synth. Catal. 2005, 347, 647.
(20) (a) Tagata, T.; Nishida, M. J. Org. Chem. 2003, 68, 9412.
(b) Arcadi, A.; Cerichelli, G.; Chiarini, M.; Correa, M.;
Zorzan, D. Eur. J. Org. Chem. 2003, 4080. (c) Lysen, M.;
Köhler, K. Synlett 2005, 1671.
(21) General Procedure for Suzuki-Couplings in Water
under Microwave Irradiation: In a glass tube were placed
aryl halide (1 mmol), phenylboronic acid (183 mg, 1.5
mmol), catalyst (1.2 mol%), 2 M K2CO3 (2 mL) and H2O (4
mL). The sealed vessel was placed into the microwave. The
mixture was irradiated in a sealed tube at 150 °C (initial
power 100 W). After 60 min the reaction was cooled to r.t.
Then H2O was added and the aqueous layer was extracted
with Et2O (3 ×). After drying (Na2SO4) and evaporation of
the solvent, the crude product was purified by column
chromatography (silica gel, hexanes–EtOAc).
4-Nitrobiphenyl (8a): yellow solid; mp 112 °C. 1H NMR
(500 Hz, CDCl3): d = 8.30 (d, J = 8.9 Hz, 2 H), 7.74 (d, J =
8.9 Hz, 2 H), 7.63 (d, J = 7.1 Hz, 2 H), 7.50 (dd, J = 7.1, 7.5
Hz, 2 H), 7.45 (t, J = 7.5 Hz, 1 H). 13C NMR (500 Hz,
CDCl3): d = 147.6, 147.1, 138.7, 129.1, 128.9, 127.8, 127.4,
124.1.
2-Hydroxybiphenyl (8b): white solid; mp 57 °C. 1H NMR
(500 Hz, CDCl3): d = 7.52–7.55 (m, 4 H), 7.44 (m, 1 H),
7.28–7.33 (m, 2 H), 7.03–7.06 (m, 2 H), 5.32 (br s, 1 H). 13
NMR (500 Hz, CDCl3): d = 152.4, 137.1, 130.2, 129.2,
129.1, 129.1, 128.1, 127.8, 120.8, 115.8.
C
Synlett 2007, No. 16, 2579–2583 © Thieme Stuttgart · New York