4454
M. North, M. Omedes-Pujol / Tetrahedron Letters 50 (2009) 4452–4454
Usanov, D. L. Chem. Commun. 2006, 4614–4616; (d) Belokon, Y. N.; Clegg, W.;
Harrington, R. W.; Maleev, V. I.; North, M.; Omedes Pujol, M.; Usanov, D. L.;
Young, C. Chem. Eur. J. 2009, 15, 2148–2165.
similar effect after a reaction time of just 2 h. For a range of five
aldehydes, reducing the reaction temperature to 0 °C enhanced
the enantioselectivities, in the case of aromatic aldehydes, to a le-
vel comparable with or better than those obtained in dichloro-
methane at room temperature. However, these reactions did
require an extended reaction time (18 h) to give conversions which
were comparable to those obtained in 2 h at room temperature.
On the basis of the above results, the aldehydes were grouped
into three classes each of which had its own optimal reaction tem-
perature to obtain high conversions and enantioselectivities after a
reaction time of 24 h. Aliphatic aldehydes gave high conversions
even at reduced reaction temperatures, so the optimal conditions
involved carrying out reactions at À20 °C to maximize the asym-
metric induction (Table 3), though these were only slightly better
than the enantioselectivities obtained at 0 °C. For electron-defi-
cient aromatic aldehydes, the optimal reaction temperature was
0 °C, whilst electron-rich aromatic aldehydes only gave high con-
versions at room temperature (Table 3).
5. (a) Blacker, A. J.; North, M.; Belokon, Y. N. Chemistry Today: (Chiral Catalysis: C–C
Coupling and Oxidation Supplement) 2004, 22, 30–32; (b) Blacker, J.; North, M.
Chem. Ind. 2005, 22–25.
6. Recyclable, polymeric and supported versions of catalysts 1 and 2 have also
been prepared which further enhance their green credentials. (a) Baleizão, C.;
Gigante, B.; Garcia, H.; Corma, A. J. Catal. 2003, 215, 199–207; (b) Baleizão, C.;
Gigante, B.; Das, D.; Alvaro, M.; Garcia, H.; Corma, A. Chem. Commun. 2003,
1860–1861; (c) Huang, W.; Song, Y.; Bai, C.; Cao, G.; Zheng, Z. Tetrahedron Lett.
2004, 45, 4763–4767; (d) Huang, W.; Song, Y.; Wang, J.; Cao, G.; Zheng, Z.
Tetrahedron 2004, 60, 10469–10477; (e) Baleizão, C.; Gigante, B.; Garcia, H.;
Corma, A. J. Catal. 2004, 221, 77–84; (f) Kim, J.-H.; Kim, G.-J. Catal. Lett. 2004, 92,
123–130; (g) Khan, N. H.; Agrawal, S.; Kureshy, R. I.; Abdi, S. H. R.; Mayani, V. J.;
Jasra, R. V. Tetrahedron: Asymmetry 2006, 17, 2659–2666; (h) Khan, N. H.;
Agrawal, S.; Kureshy, R. I.; Abdi, S. H. R.; Mayani, V. J.; Jasra, R. V. Eur. J. Org.
Chem. 2006, 3175–3180; (i) Khan, N. H.; Agrawal, S.; Kureshy, R. I.; Abdi, S. H.
R.; Mayani, V. J.; Jasra, R. V. J. Mol. Catal. A 2007, 264, 140–145.
7. For a detailed review detailing the solvent limitations of many catalysts for
asymmetric cyanohydrin synthesis see: North, M.; Usanov, D. L.; Young, C.
Chem. Rev. 2008, 108, 5146–5226.
8. (a) Baleizão, C.; Gigante, B.; Garcia, H.; Corma, A. Green Chem. 2002, 4, 272–274;
(b) Baleizão, C.; Gigante, B.; Garcia, H.; Corma, A. Tetrahedron Lett. 2003, 44,
6813–6816; (c) Baleizão, C.; Gigante, B.; Garcia, H.; Corma, A. Tetrahedron 2004,
60, 10461–10468.
9. (a) Reetz, M. T.; Lohmer, G. Chem. Commun. 1996, 1921–1922; (b) Behr, A.;
Naendrup, F.; Obst, D. Adv. Synth. Catal. 2002, 344, 1142–1145; (c) Behr, A.;
Naendrup, F.; Obst, D. Eur. J. Lipid Sci. Technol. 2002, 104, 161–166; (d)
Bayardon, J.; Holz, J.; Schäffner, B.; Andrushko, V.; Verevkin, S.; Preetz, A.;
Börner, A. Angew. Chem., Int. Ed. 2007, 46, 5971–5974; (e) Schnäffner, B.; Holz,
J.; Verevkin, S. P.; Börner, A. ChemSusChem 2008, 1, 249–253; (f) Preetz, A.;
Drexler, H.-J.; Fischer, C.; Dai, Z.; Börner, A.; Baumann, W.; Spannenberg, A.;
Thede, R.; Heller, D. Chem. Eur. J. 2008, 14, 1445–1451; (g) Schnäffner, B.; Holz,
J.; Verevkin, S. P.; Börner, A. Tetrahedron Lett. 2008, 49, 768–771.
10. For reviews of the synthesis and applications of propylene carbonate, see: (a)
Clements, J. H. Ind. Eng. Chem. Res. 2003, 42, 663–674; (b) Yoshida, M.; Ihara, M.
Chem. Eur. J. 2004, 10, 2886–2893; (c) Sun, J.; Fujita, S.-i.; Arai, M. J. Organomet.
Chem. 2005, 690, 3490–3497; (d) Zevenhoven, R.; Eloneva, S.; Teir, S. Catal.
Today 2006, 115, 73–79.
11. (a) Tullo, A. H.; Short, P. L. Chem. Eng. News 2006, 84, 22–23; See also: (b)
Meiers, R.; Dingerdissen, U.; Hölderich, W. F. J. Catal. 1998, 176, 376–386; (c)
Jenzer, G.; Mallat, T.; Maciejewski, M.; Eigenmann, F.; Baiker, A. Appl. Catal. A
2001, 208, 125–133; Li, G.; Wang, X.; Yan, H.; Chen, Y.; Su, Q. Appl. Catal. A
2001, 218, 31–38; (d) Taylor, B.; Lauterbach, J.; Blau, G. E.; Delgass, W. N. J.
Catal. 2006, 242, 142–152.
It was not possible to directly isolate the cyanohydrin trimeth-
ylsilyl ether from reactions carried out in propylene carbonate as
they codistilled with the solvent and decomposed when purifica-
tion was attempted by chromatography. However, one of the main
applications of cyanohydrins is in the preparation of
a-hydroxy
acids5 and it was possible to obtain (S)-mandelic acid in 60% iso-
lated yield simply by refluxing the mixture of propylene carbonate
and mandelonitrile trimethylsilyl ether (81% ee) with 12 N hydro-
chloric acid for 6 h followed by crystallization from ether/hexane.
That no racemization occurred during this process was demon-
strated by conversion of the mandelic acid into methyl mandelate
followed by chiral HPLC (Chirasil OD column; 80% hexane, 20% pro-
pan-2-ol; flow rate 1 mL per minute) which gave an enantiomeric
excess of 87%.
In conclusion, we have shown that vanadium complex 2c is an
active catalyst for asymmetric cyanohydrin synthesis in propylene
carbonate using low catalyst loadings at or near to room
temperature.
12. Chen, Q.; Beckman, E. J. Green Chem. 2007, 9, 802–808.
13. (a) Chen, Q.; Beckman, E. J. Green Chem. 2008, 10, 934–938; See also: (b)
Sheldon, R. A. Chem. Commun. 2008, 3352–3365.
14. (a) Melendez, J.; North, M.; Pasquale, R. Eur. J. Inorg. Chem. 2007, 3323–3326;
(b) North, M.; Pasquale, R. Angew. Chem., Int. Ed. 2009, 48, 2946–2948; (c)
Meléndez, J.; North, M.; Villuendas, P. Chem. Commun. 2009, 2577–2579.
15. Typical experimental procedure: The aldehyde (0.98 mmol) was added to a
Acknowledgements
The authors thank the EPSRC for financial support and a stu-
dentship (to M.O.P.).
solution of catalyst 1 or 2c (0.98
lmol, 0.1 mol %) in propylene carbonate
(1.75 mL) at the specified temperature. Trimethylsilyl cyanide (1.12 mmol,
0.15 mL) was then added and the reaction mixture was stirred for the specified
time. The solution was then passed through a short silica plug eluting with
CH2Cl2. The eluent was evaporated in vacuo to remove the CH2Cl2, and the
residue was analyzed by 1H NMR spectroscopy to determine the conversion. To
determine the enantiomeric excess, acetic anhydride (2.0 mmol, 0.15 mL) and
Sc(OTf)3 (5 mg, 0.01 mmol) were added to the stirred residue. After 20 min, the
reaction mixture was passed through a short silica plug eluting with MeCN.
The resulting solution was analyzed by chiral GC using a Supelco Gamma DEX
120 fused silica capillary column (30 m  0.25 mm) with hydrogen as a carrier
gas. Synthesis of mandelic acid: To a solution of mandelonitrile trimethylsilyl
ether in propylene carbonate obtained as above, was added 12 N HCl (10 mL).
The mixture was heated at reflux for 6 h, cooled to rt and made basic using 10%
aqueous NaOH solution. The aqueous solution was extracted with ether
(3 Â 10 mL), acidified with 12 N HCl, and extracted again with ether
(3 Â 10 mL). The last three ethereal extracts were combined, dried (Na2CO3),
and evaporated in vacuo to give a yellow solid which was recrystallized at 4 °C
from ether/hexane and the resulting solid was washed with hexane to give
mandelic acid (91 mg, 60%) as white crystals.
References and notes
1. For reviews see: (a) North, M. Synlett 1993, 807–820; (b) North, M. Tetrahedron:
Asymmetry 2003, 14, 147–176; (c) Brunel, J.-M.; Holmes, I. P. Angew. Chem., Int.
Ed. 2004, 43, 2752–2778; (d) Achard, T. R. J.; Clutterbuck, L. A.; North, M. Synlett
2005, 1828–1847.
2. Trost, B. M. Acc. Chem. Res. 2002, 35, 695–705.
3. (a) Belokon, Y. N.; Caveda-Cepas, S.; Green, B.; Ikonnikov, N. S.; Khrustalev, V.
N.; Larichev, V. S.; Moscalenko, M. A.; North, M.; Orizu, C.; Tararov, V. I.;
Tasinazzo, M.; Timofeeva, G. I.; Yashkina, L. V. J. Am. Chem. Soc. 1999, 121,
3968–3973; (b) Belokon, Y. N.; Green, B.; Ikonnikov, N. S.; Larichev, V. S.;
Lokshin, B. V.; Moscalenko, M. A.; North, M.; Orizu, C.; Peregudov, A. S.;
Timofeeva, G. I. Eur. J. Org. Chem. 2000, 2655–2661; (c) Belokon, Y. N.; Clegg,
W.; Harrington, R. W.; Young, C.; North, M. Tetrahedron 2007, 63, 5287–5299;
(d) Belokon, Y. N.; Clegg, W.; Harrington, R. W.; North, M.; Young, C. Inorg.
Chem. 2008, 47, 3801–3814.
4. (a) Belokon, Y. N.; North, M.; Parsons, T. Org. Lett. 2000, 2, 1617–1619; (b)
Belokon, Y. N.; Green, B.; Ikonnikov, N. S.; North, M.; Parsons, T.; Tararov, V. I.
Tetrahedron 2001, 57, 771–779; (c) Belokon, Y. N.; Maleev, V. I.; North, M.;
16. Norsikian, S.; Holmes, I.; Lagasse, F.; Kagan, H. B. Tetrahedron Lett. 2002, 43,
5715–5717.