8886 J. Phys. Chem. A, Vol. 104, No. 39, 2000
Zhang et al.
References and Notes
(1) Clemmer, D. E.; Aristov, N.; Armentrout, P. B. J. Phys. Chem.
1993, 97, 544.
(2) Chen, Y. M.; Clemmer, D. E.; Armentrout, P. B. J. Phys. Chem.
1994, 98, 11490.
(3) Clemmer, D. E.; Chen, Y. M.; Aristov, N.; Armentrout, P. B. J.
Phys. Chem. 1994, 98, 7531.
(4) Agreiter, J. K.; Knight, A. M.; Duncan, M. A. Chem. Phys. Lett.
1999, 313, 162.
(5) Liu, K.; Parson, J. M. J. Chem. Phys. 1978, 68, 1794.
(6) Kauffman, J. W.; Hauge, R. H.; Margrave, J. L. J. Phys. Chem.
1985, 89, 3541.
(7) Kauffman, J. W.; Hauge, R. H.; Margrave, J. L. J. Phys. Chem.
1985, 89, 3547.
(8) Hauge, R. H.; Kauffman, J. W.; Margrave, J. L. J. Am. Chem. Soc.
1980, 102, 6005.
(9) Knight, L. B. Jr.; Gregory, B.; Cleveland, J.; Arrington, C. A. Chem.
Phys. Lett. 1993, 204, 168.
(10) Tilson, J. L.; Harrison, J. F. J. Phys. Chem. 1991, 95, 5097.
(11) Ye, S. THEOCHEM 1997, 417, 157.
(12) Irigoras, A.; Fowler, J. E.; Ugalde, J. M. J. Phys. Chem. A 1998,
102, 293.
(13) Irigoras, A.; Fowler, J. E.; Ugalde, J. M. J. Am. Chem. Soc. 1999,
121, 574.
(14) Irigoras, A.; Fowler, J. E.; Ugalde, J. M. J. Am. Chem. Soc. 1999,
121, 8549.
Figure 6. Potential energy surface for the Sc + OH reaction at the
B3LYP/6-311++G(d,p) level. Energies given are in kcal/mol and are
relative to the separated ground-state reactants: Sc(2D) + OH(2Π).
(15) Chertihin, G. V.; Andrews, L. J. Chem. Phys. 1998, 108, 6404.
(16) Chertihin, G. V.; Saffel, W.; Yustein, J. T.; Andrews, L.; Neurock,
M.; Ricca, A.; Bauschlicher, C. W., Jr. J. Phys. Chem. 1996, 100, 5261.
(17) Zhou, M. F.; Liang, B. Y.; Andrews, L. J. Phys. Chem. A 1999,
103, 2013.
(18) Chen, M. H.; Wang, X. F.; Zhang, L. N.; Yu, M., Qin, Q. Z. Chem.
Phys. 1999, 242, 81.
Å, respectively. The one imaginary frequency confirms that it
is a real transition state.
The HSc(OH)2 molecule appeared on annealing; this molecule
may form by reactions of the HScOH molecule with the OH
radical or the ScOH molecule with H2O.
(19) Burkholder, T. R.; Andrews, L. J. Chem. Phys. 1991, 95, 8697.
(20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-
Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.;
Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian
98, Revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
(21) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(22) Lee, C., Yang, E., Parr, R. G. Phys. ReV. B 1988, 37, 785.
(23) Bauschlicher, C. W., Jr.; Ricca, A.; Partridge, H.; Langhoff, S. R.
In Recent AdVances in Density Functional Theory; Chong, D. P., Ed.; World
Scientific Publishing: Singapore, 1997; Part II.
(24) Bytheway, I., Wong, M. W. Chem. Phys. Lett. 1998, 282, 219.
(25) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639.
Krishnan, R., Binkley, J. S.; Seeger, R., Pople, J. A. J. Chem. Phys. 1980,
72, 650.
(26) Wachter, J. H. J. Chem. Phys. 1970, 52, 1033. Hay, P. J. J. Chem.
Phys. 1977, 66, 4377.
(27) Chong, D. P.; Langhoff, S. R.; Bauschlicher, C. W., Jr.; Walch, S.
P.; Partridge, H. J. Chem. Phys. 1986, 85, 2850 and references therein.
(28) Ram, R. S.; Bernath, P. F. J. Chem. Phys. 1996, 105, 2668 and
references therein.
(29) Chertihin, G. V.; Andrews, L.; Rosi, M.; Bauschlicher, C. W., Jr.
J. Phys. Chem. A 1997, 101, 9085.
Conclusions
The reactions of Sc atoms with water molecules have been
reinvestigated using the laser-ablation technique and density
functional theoretical calculations. In agreement with previous
thermal atom work, the HScOH molecules are formed by direct
insertion reaction that requires no activation energy. New
absorption at 765.6 cm-1 is also observed and is assigned to
the ScOH molecule. The ScOH molecule undergoes photoin-
duced rearrangement to the HScO molecule, which is character-
ized by Sc-H and Sc-O stretching vibrations at 1391.1 and
922.3 cm-1. UV-visible photolysis of the HScOH causes H2
elimination from a four-centered transition state and produces
the metal monoxide ScO. The aforementioned species have been
identified by isotopic substitution experiments as well as density
functional theoretical calculations. Potential energy surfaces for
the above-mentioned reactions have also been calculated, and
important transition states on the reaction paths have been
obtained.
Acknowledgment. We acknowledge contributions from
Prof. Q. Z. Qin. This work is supported by the Chinese
NKBRSF.