4
D. Hashizume, E. Nakamura, Chem. Lett. 2011, 40, 576–578; (h) S.
J. Choi, J. Kuwabara, Y. Nishimura, T. Arai, T. Kanbara, Chem.
Lett. 2012, 41, 65–67.
[4] (a) K. Ariga, T. Mori, J. P. Hill, Adv. Mater. 2012, 24, 158–176; (b)
K. Ariga, T. Mori, J. P. Hill, Chem. Sci. 2011, 2, 195.
[5] (a) T. Seki, Y. Takamatsu, H. Ito, J. Am. Chem. Soc. 2016, 138,
6252–6260; (b) K. Sakurada, T. Seki, H. Ito, CrystEngComm 2016,
18, 7217–7220; (c) M. Jin, T. Seki, H. Ito, Chem. Commun. 2016,
52, 8083–8086; (d) K. Kawaguchi, T. Seki, T. Karatsu, A. Kitamura,
H. Ito, S. Yagai, Chem. Commun. 2013, 49, 11391–11393; (e) T.
Seki, M. Jin, H. Ito, Inorg. Chem. 2016, 55, 12309–12320.
[6] (a) A. L. Balch, Gold Bull. 2004, 37, 45–50; (b) P. Pyykkö, Angew.
Chem. Int. Ed. 2004, 43, 4412–4456; (c) V. W. Yam, E. C. Cheng,
Chem. Soc. Rev. 2008, 37, 1806–1813; (d) M. J. Katz, K. Sakai, D.
B. Leznoff, Chem. Soc. Rev. 2008, 37, 1884–1895; (e) H.
Schmidbaur, A. Schier, Chem. Soc. Rev. 2008, 37, 1931–1951; (f) X.
He, V. W.-W. Yam, Coord. Chem. Rev. 2011, 255, 2111–2123; (g)
H. Schmidbaur, A. Schier, Chem. Soc. Rev. 2012, 41, 370–412.
[7] S. Yagai, T. Seki, H. Aonuma, K. Kawaguchi, T. Karatsu, T. Okura,
A. Sakon, H. Uekusa, H. Ito, Chem. Mater. 2016, 28, 234–241.
[8] (a) G. R. Krishna, M. S. R. N. Kiran, C. L. Fraser, U. Ramamurty, C.
M. Reddy, Adv. Funct. Mater. 2013, 23, 1422–1430; (b) S. Ito, T.
Yamada, T. Taguchi, Y. Yamaguchi, M. Asami, Chem. Asi. J. 2016,
11, 1963–1970; (c) T. Wang, N. Zhang, K. Zhang, J. Dai, W. Bai, R.
Bai, Chem. Commun. 2016, 52, 9679–9682; (d) D. Tu, P. Leong, Z.
Li, R. Hu, C. Shi, K. Y. Zhang, H. Yan, Q. Zhao, Chem. Commun.
2016, 52, 12494–12497; (e) P. S. Hariharan, V. K. Prasad, S. Nandi,
A. Anoop, D. Moon, S. P. Anthony, Cryst. Growth Des. 2017, 17,
146–155; (f) L. Bu, M. Sun, D. Zhang, W. Liu, Y. Wang, M. Zheng,
S. Xue, W. Yang, J. Mater. Chem. C 2013, 1, 2028–2035; (g) P. S.
Hariharan, N. S. Venkataramanan, D. Moon, S. P. Anthony, J. Phys.
Chem. C 2015, 119, 9460–9469.
Figure 6. Single-crystal structure of 3B. A set of disordered segments of
hexyl moieties is highlighted in light blue.
In summary, the lifetimes of the transient phases of aryl
gold isocyanide complexes could be tuned by modifying the
terminal structure of the TEG side chains. The new
complexes 2 and 3 possessing tolyl and hexyl groups,
respectively, at the side chain termini, showed unique
mechanochromism involving transient amorphous phases.
Furthermore, the lifetimes of the transient phases depend on
the structure of side chain termini: the rigid tolyl groups
slowed the spontaneous phase transition of 2, while the
flexible hexyl groups facilitated the spontaneous phase
transition of 3. XRD analyses also provided detailed
structural information about 2 and 3, and the markedly
different molecular arrangements in 2 upon grinding reflect
the slow reorganization from the transient 2Y phase. This
work provides new insights into the structure–property
relationship of a unique class of mechanochromic gold
complexes.
2
[9] τav is defined as: Σ(Anτn ) / Σ(Anτn).
[10] The transient phases of self-recoverable mechanochromic
compounds were reported to be amorphous: see reference 8.
[11] The molecular arrangement of 3Y has not been determined yet.
[12] Previously reported blue-emitting 1B exhibited aurophilic
interactions: see reference 7.
[13] As a preliminary result, a structurally related compound also
displayed molecular arrangements featuring an S-shaped
conformation: see Figure S5 and S6 and Table S3.
Supporting
Information
is
available
on
http://dx.doi.org/10.1246/cl.******.
References and Notes
[14] H. Ito, T. Saito, N. Oshima, N. Kitamura, S. Ishizaka, Y. Hinatsu,
M. Wakeshima, M. Kato, K. Tsuge, M. Sawamura, J. Am. Chem.
Soc. 2008, 130, 10044–10045.
[1] (a) Y. Sagara, T. Kato, Nat. Chem. 2009, 1, 605–610; (b) A. L. Balch,
Angew. Chem. Int. Ed. 2009, 48, 2641–2644; (c) Z. Chi, X. Zhang,
B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, J. Xu, Chem. Soc. Rev.
2012, 41, 3878–3896; (d) X. Zhang, Z. Chi, Y. Zhang, S. Liu, J. Xu,
J. Mater. Chem. C 2013, 1, 3376–3390; (e) C. Jobbágy, A. Deák,
Eur. J. Inorg. Chem. 2014, 2014, 4434–4449; (f) Z. Ma, Z. Wang,
M. Teng, Z. Xu, X. Jia, ChemPhysChem 2015, 16, 1811–1828; (g)
T. Seki, H. Ito, Chem. Eur. J. 2016, 22, 4322–4329; (h) Y. Sagara, S.
Yamane, M. Mitani, C. Weder, T. Kato, Adv. Mater. 2016, 28,
1073–1095; (i) P. C. Xue, J. P. Ding, P. P. Wang, R. Lu, J. Mater.
Chem. C 2016, 4, 6688–6706.
[2] (a) H. Sun, S. Liu, W. Lin, K. Y. Zhang, W. Lv, X. Huang, F. Huo,
H. Yang, G. Jenkins, Q. Zhao, W. Huang, Nat. Commun. 2014, 5,
3601; (b) K. Nagura, S. Saito, H. Yusa, H. Yamawaki, H. Fujihisa,
H. Sato, Y. Shimoikeda, S. Yamaguchi, J. Am. Chem. Soc. 2013,
135, 10322–10325.
[3] (a) Y. Sagara, T. Komatsu, T. Ueno, K. Hanaoka, T. Kato, T.
Nagano, J. Am. Chem. Soc. 2014, 136, 4273–4280; (b) Y. Sagara, T.
Mutai, I. Yoshikawa, K. Araki, J. Am. Chem. Soc. 2007, 129,
1520–1521; (c) J. Wu, Y. Cheng, J. Lan, D. Wu, S. Qian, L. Yan, Z.
He, X. Li, K. Wang, B. Zou, J. You, J. Am. Chem. Soc. 2016, 138,
12803–12812; (d) G. Zhang, J. Lu, M. Sabat, C. L. Fraser, J. Am.
Chem. Soc. 2010, 132, 2160–2162; (e) S.-J. Yoon, J. W. Chung, J.
Gierschner, K. S. Kim, M.-G. Choi, D. Kim, S. Y. Park, J. Am.
Chem. Soc. 2010, 132, 13675–13683; (f) B. J. Xu, Y. X. Mu, Z.
Mao, Z. L. Xie, H. Z. Wu, Y. Zhang, C. J. Jin, Z. G. Chi, S. W. Liu,
J. R. Xu, Y. C. Wu, P. Y. Lu, A. Lien, M. R. Bryce, Chem. Sci.
2016, 7, 2201–2206; (g) H. Tsuji, G. M. O. Favier, C. Mitsui, S. Lee,