1070
J. Wilken et al. / Tetrahedron: Asymmetry 11 (2000) 1067±1071
from 75:25 to 85:15 (Table 3, entries 14, 15, 17 and 18) structures B and C exhibit a very good
performanceÐconsidering the low ligand concentration of only 3 mol% used in these reactions.
In conclusion, the catalytic enantioselective addition of diethylzinc to 1,3-dithian-2-yl-sub-
stituted aliphatic aldehydes provides a practical method for the preparation of highly versatile,
enantiomerically enriched building blocks. With enantiomeric ratios of up to 85:15 (for 1-(1,3-
dithian-2-yl)-3-pentanol 2b) promising results were obtained utilizing only 3 mol% of the catalyst
precursor. A process optimization focused on the reaction temperature, catalyst concentration
and ligand structure is currently under way.
Acknowledgements
We express our thanks to Degussa-Huls AG, Hoechst AG, Witco GmbH, the Fonds der
Chemischen Industrie and the Zentrale Forschungsforderung der Universitat Gesamthochschule
Kassel for the generous provision of chemicals and for ®nancial support.
References
1. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1991.
2. (a) Seebach, D.; Grobel, B. T. Synthesis 1977, 357. (b) Bulman Page, P. C.; van Niel, M. B.; Prodger, J. C.
Tetrahedron 1989, 45, 7643.
3. Pettit, G. R.; van Tamelen, E. E. Org. React. 1962, 12, 356.
4. Seebach, D. Synthesis 1969, 1, 17.
5. For example, see: (a) Brook, A. G.; Anderson, D. G.; Du, J. M.; Jones, P. F.; MacRae, D. M. J. Am. Chem. Soc.
1968, 90, 1076. (b) Motherwell, W. B.; Wilkinson, J. A. Synlett. 1991, 3, 191. (c) Yoshiyama, T.; Fuchigami, T.
Chem. Lett. 1992, 1995. (d) Epling, G. A.; Wang, Q. Synlett. 1992, 335. (e) Shigemasa, Y.; Ogawa, M.; Sashiwa, H.;
Saimoto, H. Tetrahedron Lett. 1989, 30, 1277. (f) Fujita, E.; Nagao, Y.; Kanero, K. Chem. Pharm. Bull. 1978, 26,
3743. (g) Degani, I.; Fochi, R.; Regondi, V. Synthesis 1981, 51. (h) Park, Y. J.; Kim, Y. H.; Oae, S. Heteroatom.
Chem. 1990, 1, 237. (i) Rao, C. S.; Chandrasekharam, M.; Patro, B.; Ila, H.; Junjappa, H. Tetrahedron 1994, 50,
5783.
6. (a) Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 6071. (b) Soai, K.; Yokoyama, S.;
Hayasaka, T. J. Org. Chem. 1991, 56, 4264.
7. Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
8. (a) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833. (b) Fitzpatrick, K.; Hulst, R.; Kellogg, R. M. Tetrahedron:
Asymmetry 1995, 6, 1861.
9. The following solvents were also tested for the ethylation of 1,3-dithian-2-yl substituted aldehydes: ether, aceto-
nitrile, tetrahydrofurane, acetone, dichloromethane.
10. (a) Ligand A: Chaloner, P. A.; Perera, S. A. R. Tetrahedron Lett. 1987, 28, 3013. (b) Ligand B: Wallbaum, S.;
Martens, J. Tetrahedron: Asymmetry 1993, 4, 637. (c) Ligand C: Wallbaum, S. Ph.D. Thesis, Universitat
Oldenburg, 1993. The ligands B and C have been prepared from benzyl 2-azabicyclo[3.3.0]octane-3-carboxylate, a
non-recyclable, enantiomerically pure waste material, which is obtained in the production of the pharmaceutical
ingredient ramipril by Hoechst AG: (a) Teetz, V.; Geiger, R.; Gaul, H. Tetrahedron Lett. 1984, 25, 4479. (b)
Urbach, H.; Henning, R. Heterocycles 1989, 28, 957. The present paper is Part 16 of our series of publications on
the utilization of industrial waste materials. For Part 15, see: Wassmann, S.; Wilken, J.; Martens, J. Tetrahedron:
Asymmetry 1999, 10, 4437. For Part 14, see: Kossenjans, M.; Soeberdt, M.; Wallbaum, S.; Harms, K.; Martens, J.;
Aurich, H. G. J. Chem. Soc., Perkin Trans. 1 1999, 2353.
11. Synthesis of 3-(2-methyl-1,3-dithian-2-yl)-propanal 1a via lithiation of 2-methyl-1,3-dithiane with n-butyllithium,
alkylation with 2-(2-bromoethyl)-1,3-dioxolane (yield after ¯ash chromatography: 91%) and, ®nally, removal of
the aldehyde-protecting group by hydrolysis with 2N HCl (yield after distillation: 95%), a colorless oil (b.p.:
110ꢀC at 0.2 torr), product characterization by H and 13C NMR spectroscopy.
1