Paper
RSC Advances
23 D. J. Darensbourg. Salen Metal Complexes as Catalysts for
the Synthesis of Polycarbonates from Cyclic Ethers and
Carbon Dioxide, in Synthetic Biodegradable Polymers, ed. B.
electrocatalytic device for the reduction of CO2 to CO
exhibiting high faradic efficiency, J. Mater. Chem. A, 2016,
4(40), 15320–15326, DOI: 10.1039/C6TA04801C.
¨
Rieger, A. Kunkel, W. G. Coates, R. Reichardt, E. Dinjus 35 R. Wilson, H. Akhavan-Tai, R. DeSilva and A. P. Schaap,
and A. T. Zevaco, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012; pp. 1–27.
Comparison Between Acridan Ester, Luminol, and
Ruthenium Chelate Electrochemiluminescence,
24 H. Khoshro, H. R. Zare, A. Gorji, M. Namazian, A. A. Jafari
and R. Vafazadeh, The effect of electronic structure on
Electroanal., 2001, 13(13), 1083–1092, DOI: 10.1002/1521-
4109(200109)13:13<1083::AID-ELAN1083>3.0.CO;2-D.
electrocatalytic behaviors of cobalt Schiff base complexes: 36 G. Wang and Y. Lin, Novel counter electrodes based on NiP-
Electrosynthesis of 2-phenylacetic acid using carbon
dioxide, J. Electroanal. Chem., 2014, 732, 117–121, DOI:
10.1016/j.jelechem.2014.07.039.
plated glass and Ti plate substrate for dye-sensitized solar
cells, J. Mater. Sci., 2007, 42(13), 5281–5285, DOI: 10.1007/
s10853-006-0395-y.
25 T. Kurahashi and H. Fujii, One-Electron Oxidation of 37 H. Zhu, H. Liu, I. Zhitomirsky and S. Zhu, Preparation of
Electronically Diverse Manganese(III) and Nickel(II) Salen
Complexes: Transition from Localized to Delocalized
Mixed-Valence Ligand Radicals, J. Am. Chem. Soc., 2011,
133(21), 8307–8316, DOI: 10.1021/ja2016813.
metal–organic framework lms by electrophoretic
deposition method, Mater. Lett., 2015, 142, 19–22, DOI:
10.1016/j.matlet.2014.11.113.
38 I. Hod, M. D. Sampson, P. Deria, C. P. Kubiak, O. K. Farha
and J. T. Hupp, Fe-Porphyrin-Based Metal–Organic
Framework Films as High-Surface Concentration,
Heterogeneous Catalysts for Electrochemical Reduction of
CO2, ACS Catal., 2015, 5(11), 6302–6309, DOI: 10.1021/
acscatal.5b01767.
26 T. P. Yoon and E. N. Jacobsen, Privileged Chiral Catalysts,
Science, 2003, 299(5613), 1691–1693, DOI: 10.1126/
science.1083622.
27 Y. Xie, T.-T. Wang, X.-H. Liu, K. Zou and W.-Q. Deng, Capture
and conversion of CO2 at ambient conditions by
a conjugated microporous polymer, Nat. Commun., 2013, 4, 39 Q.-G. Fu, X.-Y. Nan, X. Chen, W.-L. Wang, H.-J. Li, Y.-Y. Li
2960, DOI: 10.1038/ncomms2960.
and L.-T. Jia, Electrophoretic deposition of SiC nanowires
onto carbon/carbon composites to improve the interface
bonding of Ti–Ni–Si joint, Mater. Des., 2015, 80, 137–143,
DOI: 10.1016/j.matdes.2015.04.042.
28 M. B. Solomon, T. L. Church and D. M. D'Alessandro,
Perspectives on metal–organic frameworks with intrinsic
electrocatalytic activity, CrystEngComm, 2017, 19(29), 4049–
4065, DOI: 10.1039/c7ce00215g.
29 M. C. So, S. Jin, H.-J. Son, G. P. Wiederrecht, O. K. Farha and
J. T. Hupp, Layer-by-Layer Fabrication of Oriented Porous
Thin Films Based on Porphyrin-Containing Metal–Organic
40 H. E. Gottlieb, V. Kotlyar and A. Nudelman, NMR Chemical
Shis of Common Laboratory Solvents as Trace Impurities,
J. Org. Chem., 1997, 62(21), 7512–7515, DOI: 10.1021/
jo971176v.
Frameworks, J. Am. Chem. Soc., 2013, 135(42), 15698– 41 I. S. Zavarine and C. P. Kubiak, A versatile variable
15701, DOI: 10.1021/ja4078705.
30 I. Hod, W. Bury, D. M. Karlin, P. Deria, C.-W. Kung,
M. J. Katz, M. So, B. Klahr, D. Jin, Y.-W. Chung,
temperature thin layer reectance spectroelectrochemical
cell, J. Electroanal. Chem., 2001, 495(2), 106–109, DOI:
10.1016/s0022-0728(00)00394-6.
T. W. Odom, O. K. Farha and J. T. Hupp, Directed Growth 42 P. M. Usov, C. Fabian and D. M. D'Alessandro, Rapid
of Electroactive Metal–Organic Framework Thin Films
Using Electrophoretic Deposition, Adv. Mater., 2014,
26(36), 6295–6300, DOI: 10.1002/adma.201401940.
determination of the optical and redox properties of
metal–organic framework via in situ solid state
spectroelectrochemistry, Chem. Commun., 2012, 48(33),
3945–3947, DOI: 10.1039/C2CC30568B.
a
31 H. Fei, S. Pullen, A. Wagner, S. Ott and S. M. Cohen,
Functionalization of robust Zr(IV)-based metal-organic 43 M. L. Clark, B. Rudshteyn, A. Ge, S. A. Chabolla,
framework lms via a postsynthetic ligand exchange,
Chem. Commun., 2015, 51(1), 66–69, DOI: 10.1039/
C4CC08218D.
C. W. Machan, B. T. Psciuk, J. Song, G. Canzi, T. Lian,
V. S. Batista and C. P. Kubiak, Orientation of Cyano-
Substituted Bipyridine Re(I) fac-Tricarbonyl Electrocatalysts
Bound to Conducting Au Surfaces, J. Phys. Chem. C, 2016,
120(3), 1657–1665, DOI: 10.1021/acs.jpcc.5b10912.
˘
32 C. R. Wade, M. Li and M. Dinca, Facile Deposition of
Multicolored Electrochromic Metal–Organic Framework
Thin Films, Angew. Chem., Int. Ed., 2013, 52(50), 13377– 44 S. Brunauer, P. H. Emmett and E. Teller, Adsorption of Gases
13381, DOI: 10.1002/anie.201306162.
in Multimolecular Layers, J. Am. Chem. Soc., 1938, 60(2), 309–
33 C.-W. Kung, J. E. Mondloch, T. C. Wang, W. Bury,
319, DOI: 10.1021/ja01269a023.
W. Hoffeditz, B. M. Klahr, R. C. Klet, M. J. Pellin, 45 S. W. Kim, S. C. Shim, D. Y. Kim and C. Y. Kim, Synthesis and
O. K. Farha and J. T. Hupp, Metal–Organic Framework
Thin Films as Platforms for Atomic Layer Deposition of
Cobalt Ions To Enable Electrocatalytic Water Oxidation,
properties of novel triphenylamine polymers containing
ethynyl and aromatic moieties, Synth. Met., 2001, 122(2),
363–368, DOI: 10.1016/S0379-6779(00)00398-2.
ACS Appl. Mater. Interfaces, 2015, 7(51), 28223–28230, DOI: 46 C. Hua, B. Chan, A. Rawal, F. Tuna, D. Collison, J. M. Hook
10.1021/acsami.5b06901.
34 L. Ye, J. Liu, Y. Gao, C. Gong, M. Addicoat, T. Heine, C. Woll
and L. Sun, Highly oriented MOF thin lm-based
and D. M. D'Alessandro, Redox tunable viologen-based
porous organic polymers, J. Mater. Chem. C, 2016, 4(13),
2535–2544, DOI: 10.1039/C6TC00132G.
This journal is © The Royal Society of Chemistry 2018
RSC Adv., 2018, 8, 24128–24142 | 24141