D
Y. Masuya et al.
Cluster
Synlett
1p is determined by the initial de-alkylation step, in which
a less hindered methyl group reacts more rapidly than an
ethyl group.
Carbon–silicon bond cleavage reaction for the synthesis of silole
derivatives: (e) Tobisu, M.; Onoe, M.; Kita, Y.; Chatani, N. J. Am.
Chem. Soc. 2009, 131, 7506. (f) Onoe, M.; Baba, K.; Kim, Y.; Kita,
Y.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2012, 134, 19477.
(g) Onoe, M.; Morioka, T.; Tobisu, M.; Chatani, N. Chem. Lett.
2013, 42, 238. Carbon-phosphorus bond cleavage reaction for
the synthesis of phosphole derivatives: (h) Baba, K.; Tobisu, M.;
Chatani, N. Angew. Chem. Int. Ed. 2013, 52, 11892. (i) Baba, K.;
Tobisu, M.; Chatani, N. Org. Lett. 2015, 17, 70. Carbon–sulfur
bond cleavage reaction for the synthesis of thiophene deriva-
tives: (j) Tobisu, M.; Masuya, Y.; Baba, K.; Chatani, N. Chem. Sci.
2016, 7, 2587. (k) Masuya, Y.; Tobisu, M.; Chatani, N. Org. Lett.
2016, 18, 4312. (l) Carbon–germyl bond cleavage reaction for
the synthesis of germole derivatives: Tobisu, M.; Baba, K.;
Chatani, N. Org. Lett. 2011, 13, 3282.
In summary, we report herein on the thiolate-initiated
formal double carbon–sulfur bonds metathesis for use in
the synthesis of dibenzothiophene derivatives. The C(aryl)–
S bond cleavage process was found to proceed through a
concerted nucleophilic aromatic substitution (CSNAr) path-
way. Furthermore, this metathesis protocol enables the
method to be expanded to double carbon–oxygen bonds
and carbon–oxygen/carbon–sulfur metathesis.
Funding Information
(6) (a) Baba, K.; Masuya, Y.; Chatani, N.; Tobisu, M. Chem. Lett. 2017,
46, 1296. (b) Lian, Z.; Bhawal, B. N.; Yu, P.; Morandi, B. Science
2017, 356, 1059.
(7) Treatment of 1a-Me (0.20 mmol) with [(allyl)PdCl]2 (5.0 mol%)
and NaOtBu (200 mol%) in DMF (1 mL) under 160 °C for 18 h
gave 2a in 97% NMR yield.
This work was supported by Grant-in-Aid for Scientific Research
(18H01978) and Scientific Research on Innovative Area "Precisely De-
signed Catalysts with Customized Scaffolding" (18H04259) from
MEXT, Japan.()
(8) Treatment of 1j with a stoichiometric amount of NaSMe was
reported to give a demethylated compound, along with a small
amount of 2j (11%). However, this was not investigated in detail.
See: Furia, F. D.; Licini, G.; Modena, G.; Valle, G. Bull. Soc. Chim.
Fr. 1990, 134.
Acknowledgment
We thank the Instrumental Analysis Center, Faculty of Engineering,
Osaka University, for their assistance with HRMS.
(9) Dibenzothiophene (2a) [CAS: 132-65-0]; Typical Procedure
An oven-dried 5 mL screw-capped vial was charged with 1a-Me
(49.2 mg, 0.20 mmol), NaSMe (2.8 mg, 0.04 mmol), and DMF (1
mL) under a gentle stream of nitrogen. The vessel was then
sealed and heated at 160 °C for 4 h. The mixture was cooled to
r.t. and filtered through a short pad of silica gel, eluting with
EtOAc. The eluent was evaporated to give a residue, which was
purified by flash chromatography (Rf 0.43, hexane) to give 2a as
a white solid (49 mg, 87%). 1H NMR (CDCl3, 399.78 MHz): δ =
7.44-7.47 (m, 4 H), 7.84–7.87 (m, 2 H), 8.15–8.17 (m, 2 H). 13C
NMR (CDCl3, 100.53 MHz): δ = 121.7, 122.9, 124.5, 126.8, 135.7,
139.6. HRMS (EI): m/z calcd for C12H8S: 184.0347; found:
184.0349.
(10) Calculations were performed with the Gaussian 09, Rev. D01
program (see the Supporting Information): Frisch, M. J.; Trucks,
G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.
R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;
Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A.
F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.;
Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.;
Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi,
J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross,
J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;
Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels,
A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox,
D. J. Gaussian 09, Revision D.01; Gaussian, Inc: Wallingford CT,
2013.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
References and Notes
(1) Selected reviews: (a) Yamaguchi, S.; Tamao, K. J. Synth. Org.
Chem., Jpn. 1998, 56, 500. (b) Yamaguchi, S.; Tamao, K. Chem.
Lett. 2005, 34, 2. (c) Shimizu, M.; Hiyama, T. Synlett 2012, 973.
(d) Hill, A. F.; Fink, M. J. Advances in Organometallic Chemistry;
Academic Press: London, 2011.
V
o
l.
5
9
(2) Selected reviews: (a) Baumgartner, T.; Réau, R. Chem. Rev. 2006,
106, 4681. (b) Crassous, J.; Réau, R. Dalton Trans. 2008, 6865.
(c) Matano, Y.; Imahori, H. Org. Biomol. Chem. 2009, 7, 1258.
(d) Baumgartner, T. Acc. Chem. Res. 2014, 47, 1613. (e) Stolar,
M.; Baumgartner, T. Chem. Asian J. 2014, 9, 1212. (f) Matano, Y.
Chem. Res. 2015, 15, 636. (g) Duffy, M. P.; Delaunay, W.; Bouit,
P.-A.; Hissler, M. Chem. Soc. Rev. 2016, 45, 5296. (h) Joly, D.;
Bouit, P.-A.; Hissler, M. J. Mater. Chem. C 2016, 4, 3686.
(i) Hibner-Kulicka, P.; Joule, J. A.; Skalik, J.; Bałczewski, P. RSC
Adv. 2017, 7, 9194.
(3) Selected reviews: (a) Takimiya, K.; Shinamura, S.; Osaka, I.;
Miyazaki, E. Adv. Mater. 2011, 23, 4347. (b) Takimiya, K.;
Nakano, M. Bull. Chem. Soc. Jpn. 2018, 91, 121.
(4) Selected reviews: (a) Wu, B.; Yoshikai, N. Org. Biomol. Chem.
2016, 14, 5402. (b) Kodama, T.; Chatani, N.; Tobisu, M. J. Synth.
Org. Chem., Jpn. 2018, 76, 1185.
(5) Selected reviews: (a) Carbon–silicon bond cleavage: Komiyama,
T.; Minami, Y.; Hiyama, T. ACS Catal. 2017, 7, 631. (b) Carbon–
phosphorus bond cleavage: Wang, L.; Chen, H.; Duan, Z. Chem.
Asian J. 2018, 13, 2164. (c) Carbon–sulfur bond cleavage:
Modha, S. G.; Mehta, V. P.; Van der Eycken, E. V. Chem. Soc. Rev.
2013, 42, 5042. (d) Pan, F.; Shi, Z.-J. ACS Catal. 2014, 4, 280.
(11) (a) The first report: Neumann, C. N.; Hooker, J. M.; Ritter, T.
Nature 2016, 534, 369. (b) Review on carbon–fluorine bond
forming reactions via CSNAr mechanism: Neumann, C. N.;
Ritter, T. Acc. Chem. Res. 2017, 50, 2822. (c) Mechanistic study:
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–E