Dalton Transactions
Communication
2 (a) A. Depauw, N. Kumar, M.-H. Ha-Thi and I. Leray,
J. Phys. Chem. A, 2015, 119, 6065–6073; (b) H.-F. Ji,
R. Dabestani, G. M. Brown and R. A. Sachleben, Chem.
Commun., 2000, 833–834; (c) J. S. Kim, H. Suh, J. K. Kimc
and M. H. Cho, J. Chem. Soc., Perkin Trans. 1, 1998, 2307–
spectrum of compound 3 enabled the confirmation of the
inclusion of the CH2-sumanene and Ar–H (sumanene)
protons in the same spin system, and thus the multiplicity
of this signal was supported. See the discussion and the
2-D NMR spectra in section S2 in the ESI.†
2312; (d) V. Souchon, I. Leray and B. Valeur, Chem. 15 For IR spectra, see section S3 in the ESI.†
Commun., 2006, 4224–4226; (e) S. K. Kim, G. I. Vargas- 16 For UV-Vis spectra, see section S4 in the ESI.† In addition,
Zuniga, B. P. Hay, N. J. Young, L. H. Delmau, C. Masselin,
C.-H. Lee, J. S. Kim, V. M. Lynch, B. A. Moyer and
J. L. Sessler, J. Am. Chem. Soc., 2012, 134, 1782–1792.
UV-Vis spectra excluded experimentally any possible charge
transfer phenomenon between ferrocene and sumanene
moieties. Therefore, the sumanene moiety remains neutral
throughout further binding with Cs+.
3 (a) A. Scozzari, Electrochemical Sensing Methods: A Brief
Review, in Algal Toxins: Nature, Occurrence, Effect and 17 The absorption maximum coming from the imine moiety
Detection, ed. V. Evangelista, L. Barsanti, A. M. Frassanito,
V. Passarelli and P. Gualtieri, 2008; (b) A. M. Ashrafi,
for compounds 4, 5, and 9 overlapped with the Fc’s absorp-
tion maximum (ca. 390–360 nm).
Z. Koudelkova, E. Sedlackova, L. Richtera and V. Adam, 18 For the discussion on the dependency of the type of substi-
J. Electrochem. Soc., 2018, 165, B824–B834; (c) B. Silwana,
C. Van Der Horst, E. Iwuoha and V. Somerset, J. Environ.
Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 2016,
51, 1233–1247.
tuent on the Fc’s oxidation/reduction peak position, see for
example: N. G. Tsierkezos, J. Solution Chem., 2007, 36, 289–
302.
ox
19 In the reference, the Fc oxidation peak was at E = 0.298
1=2
4 (a) D. Astruc, Eur. J. Inorg. Chem., 2017, 6–29;
V.
(b) O. B. Sutcliffe, A. Chesney and M. R. Bryce, 20 See section S8 in the ESI† for cyclic voltammograms.
J. Organomet. Chem., 2001, 637–639, 134–138; (c) F. Zapata, 21 See section S5 in the ESI† for the fluorescence titration
A. Caballero, A. Tárraga and P. Molina, J. Org. Chem., 2010,
75, 162–169.
5 See for example: (a) T. Romero, A. Caballero, A. Tarraga
and P. Molina, Org. Lett., 2009, 11, 3466–3469;
(b) H. Huang, Z. Xin, L. Yuan, B.-Y. Wang and Q.-Y. Cao,
Inorg. Chim. Acta, 2018, 483, 425–430.
spectra of other ferrocene–sumanene conjugates (4–5 and
8–9). The UV-Vis spectra titration method was also applied
for tracking the binding phenomenon, however this tech-
nique was found to be not as sensitive as the fluorescence
spectra titration method (see the plots for representative
compound 3 in Fig. S43, ESI†). Thus, further analyses and
calculations were based on the fluorescence spectra titra-
tion experiments.
6 (a) S. Higashibayashi and H. Sakurai, Chem. Lett., 2011, 40,
122–128; (b) T. Amaya and T. Hirao, Chem. Rec., 2015, 15,
310–321; (c) M. Saito, H. Shinokubo and H. Sakurai, Mater. 22 Due to the solubility of the studied compounds (CsCl –
Chem. Front., 2018, 2, 635–661.
soluble in MeOH, not soluble in halogenated solvents;
compounds 3–5 and 8–9 – soluble in halogenated solvents,
not soluble in MeOH), the binding studies were performed
in a mixed solvent system: MeOH : CHCl3 = 1/1 v/v.
7 H. Sakurai, T. Daiko and T. Hirao, Science, 2003, 301, 1878.
8 (a) Y. Shoji, T. Kajitani, F. Ishiwari, Q. Ding, H. Sato,
H. Anetai, T. Akutagawa, H. Sakurai and T. Fukushima,
Chem. Sci., 2017, 8, 8405–8410; (b) I. Hisaki, H. Toda, 23 See for example: (a) P. Kaur, H. Kaur and K. Singh, RSC
H. Sato, N. Tohnai and H. Sakurai, Angew. Chem., Int. Ed.,
2017, 56, 15294–15298.
9 B. Topolinski, B. M. Schmidt, S. Higashibayashi, H. Sakurai
and D. Lentz, Dalton Trans., 2013, 42, 13809–13812.
10 S. N. Spisak, Z. Wei, A. Y. Rogachev, T. Amaya, T. Hirao and
Adv., 2013, 3, 64–67; (b) P. N. Borase, P. B. Thale and
G. S. Shankarling, Dyes Pigm., 2016, 134, 276–284;
(c) T. Nesakumar, J. I. Edisona, R. Atchudan, J.-J. Shim,
S. Kalimuthu, B.-C. Ahn and Y. R. Lee, J. Photochem.
Photobiol., B, 2016, 158, 235–242.
M. A. Petrukhina, Angew. Chem., Int. Ed., 2017, 56, 2582– 24 For Job’s plots, see section S6 in the ESI.†
2587.
25 The studied Cs+ recognition phenomenon using the Fc–
11 For experimental details, see the Experimental section in
the ESI.† The reaction scheme dealing with the synthesis
of ferrocene derivatives used is also presented therein
(Scheme S1).†
sumanene conjugates did not utilize the ligation of the
metal ion at the heteroatom. Theoretical evidence for the
observed cation–π interaction with buckybowls was pre-
viously provided, see: (a) U. D. Priyakumar and G. N. Sastry,
12 B. B. Shrestha, S. Karanjit, G. Panda, S. Higashibayashi and
H. Sakurai, Chem. Lett., 2013, 42, 386–388.
Tetrahedron
Lett.,
2003,
44,
6043–6046;
(b) U. D. Priyakumar, M. G. P. Krishna and G. N. Sastry,
Tetrahedron Lett., 2004, 60, 3037–3043; (c) D. Vijay,
H. Sakurai, V. Subramanian and G. N. Sastry, Phys. Chem.
Chem. Phys., 2012, 14, 3057–3065; (d) M. Rellán-Piñeiro,
J. Rodríguez-Otero, E. M. Cabaleiro-Lago and D. Josa,
J. Mol. Model., 2013, 19, 2049–2055.
13 For NMR spectra, see section S2 in the ESI.†
14 1H–1H COSY NMR spectra enabled (1) the confirmation of
the chemical shifts of the benzylic endo and benzylic exo
protons coming from the sumanene moiety, (2) the confir-
mation of the signal overlapping for compound 3 (benzylic
endo + NH–CH2-sumanene), and (3) the assignment of the 26 For the basis of this method, see for example: A. M. Pyle,
respective NH and CH2 protons. The 1H–1H TOCSY NMR
J. P. Rehmann, R. Meshoyrer, C. V. Kumar, N. J. Turro
This journal is © The Royal Society of Chemistry 2019
Dalton Trans., 2019, 48, 17147–17152 | 17151