GSTs of P. chrysosporium
7595–7600
isoform PcGHR2 (formerly named PcGSTO2 (9)) is responsi-
ble for this latter reaction. The wide presence of GHRs in bac-
teria, fungi, and plants suggests an additional physiological role
beyond the degradation of the recently introduced pentachlo-
rophenol. Concerning the white rot fungi, their main physio-
logical feature is their ability to mineralize wood components
and in particular lignin. It has been suggested recently that
chlorination of lignin is a phenomenon occurring through, at
least in part, the activity of chloroperoxidase (56, 57). As a
result, soils and decayed plant litter contain significant quanti-
ties of chlorinated aromatic polymers, which could lead after
oxidation via various oxidative systems to the formation of
chlorinated quinones. GHRs could play a central role in the
intracellular detoxication pathways of such molecules. On the
other hand, the significance of the Omega class extension in
saprotrophic fungi remains unclear, and the function of the
different GSTO isoforms in white rot fungi remains to be
elucidated.
17. Xun, L., Belchik, S. M., Xun, R., Huang, Y., Zhou, H., Sanchez, E., Kang, C.,
and Board, P. G. (2010) Biochem. J. 428, 419–427
18. Garcera´, A., Barreto, L., Piedrafita, L., Tamarit, J., and Herrero, E. (2006)
Biochem. J. 398, 187–196
19. Herrero, E., Ros, J., Tamarit, J., and Bellí, G. (2006) Photosynth. Res. 89,
127–140
20. Schenk, P. M., Baumann, S., Mattes, R., and Steinbiss, H. H. (1995) Bio-
Techniques 19, 196–198, 200
21. Ramakrishnan, V., Finch, J. T., Graziano, V., Lee, P. L., and Sweet, R. M.
(1993) Nature 362, 219–223
22. Koh, C. S., Navrot, N., Didierjean, C., Rouhier, N., Hirasawa, M., Knaff,
D. B., Wingsle, G., Samian, R., Jacquot, J. P., Corbier, C., and Gelhaye, E.
(2008) J. Biol. Chem. 283, 23062–23072
23. Couturier, J., Koh, C. S., Zaffagnini, M., Winger, A. M., Gualberto, J. M.,
Corbier, C., Decottignies, P., Jacquot, J. P., Lemaire, S. D., Didierjean, C.,
and Rouhier, N. (2009) J. Biol. Chem. 284, 9299–9310
24. Nickerson, W. J., Falcone, G., and Strauss, G. (1963) Biochemistry 2,
537–543
25. Vince, R., Daluge, S., and Wadd, W. B. (1971) J. Med. Chem. 14,
402–404
26. Roth, M., Carpentier, P., Kaïkati, O., Joly, J., Charrault, P., Pirocchi, M.,
Kahn, R., Fanchon, E., Jacquamet, L., Borel, F., Bertoni, A., Israel-Gouy, P.,
and Ferrer, J. L. (2002) Acta Crystallogr. D Biol. Crystallogr. 58, 805–814
27. Kabsch, W. (1993) J. Appl. Crystallogr. 26, 795–800
28. Collaborative Computational Project No. 4 (1994) Acta Crystallogr. D
Biol. Crystallogr. 50, 760–763
Acknowledgments—We thank the staff of the BM30A beamline at
ESRF for their kind assistance during data collection, Arnaud Gruez
for numerous discussions, and Jean-Michel Girardet for technical
assistance.
29. Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S., and Tucker,
P. A. (2005) Acta Crystallogr. D Biol. Crystallogr. 61, 449–457
30. Schneider, T. R., and Sheldrick, G. M. (2002) Acta Crystallogr. D Biol.
Crystallogr. 58, 1772–1779
REFERENCES
1. Martinez, D., Larrondo, L. F., Putnam, N., Gelpke, M. D., Huang, K., Chap-
man, J., Helfenbein, K. G., Ramaiya, P., Detter, J. C., Larimer, F., Coutinho,
P. M., Henrissat, B., Berka, R., Cullen, D., and Rokhsar, D. (2004) Nat.
Biotechnol. 22, 695–700
31. Sheldrick, G. M. (2002) Z. Kristallogr. 217, 644–650
32. Cowtan, K. (1994) Joint CCP4 and ESF-EACBM Newsletter on Protein
Crystallography 31, 34–38
33. Morris, R. J., Zwart, P. H., Cohen, S., Fernandez, F. J., Kakaris, M., Kirillova,
O., Vonrhein, C., Perrakis, A., and Lamzin, V. S. (2004) J. Synchr. Rad. 11,
56–59
2. Morel, M., Kohler, A., Martin, F., Gelhaye, E., and Rouhier, N. (2008) New
Phytol. 180, 391–407
3. Morel, M., Ngadin, A. A., Jacquot, J. P., and Gelhaye, E. (2009) Adv. Bot.
Res. 52, 153–186
34. Perrakis, A., Morris, R., and Lamzin, V. S. (1999) Nat. Struct. Biol. 6,
458–463
4. Doddapaneni, H., and Yadav, J. S. (2005) Mol. Genet. Genomics 274,
454–466
35. Emsley, P., and Cowtan, K. (2004) Acta Crystallogr. D Biol. Crystallogr. 60,
2126–2132
5. Kasai, N., Ikushiro, S., Hirosue, S., Arisawa, A., Ichinose, H., Wariishi, H.,
Ohta, M., and Sakaki, T. (2009) Biochem. Biophys. Res. Commun. 387,
103–108
36. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Acta Crystallogr.
D Biol. Crystallogr. 53, 240–255
37. Gelhaye, E., Rouhier, N., Ge´rard, J., Jolivet, Y., Gualberto, J., Navrot, N.,
Ohlsson, P. I., Wingsle, G., Hirasawa, M., Knaff, D. B., Wang, H., Dizen-
gremel, P., Meyer, Y., and Jacquot, J. P. (2004) Proc. Natl. Acad. Sci. U.S.A.
101, 14545–14550
6. Kasai, N., Ikushiro, S., Shinkyo, R., Yasuda, K., Hirosue, S., Arisawa, A.,
Ichinose, H., Wariishi, H., and Sakaki, T. (2010) Appl. Microbiol. Biotech-
nol. 86, 773–780
7. Matsuzaki, F., and Wariishi, H. (2004) Biochem. Biophys. Res. Commun.
324, 387–393
38. Gelhaye, E., Rouhier, N., Laurent, P., Sautie`re, P. E., Martin, F., and Jac-
quot, J. P. (2002) Physiol. Plant. 114, 165–171
8. Schro¨der, P., Scheer, C. E., Diekmann, F., and Stampfl, A. (2007) Environ.
Sci. Pollut. Res. Int. 14, 114–122
39. Board, P. G., and Anders, M. W. (2007) Chem. Res. Toxicol. 20,
149–154
9. Morel, M., Ngadin, A. A., Droux, M., Jacquot, J. P., and Gelhaye, E. (2009)
Cell. Mol. Life Sci. 66, 3711–3725
40. Rao, D. N., Takahashi, N., and Mason, R. P. (1988) J. Biol. Chem. 263,
17981–17986
10. Board, P. G., Coggan, M., Chelvanayagam, G., Easteal, S., Jermiin, L. S.,
Schulte, G. K., Danley, D. E., Hoth, L. R., Griffor, M. C., Kamath, A. V.,
Rosner, M. H., Chrunyk, B. A., Perregaux, D. E., Gabel, C. A., Geoghegan,
K. F., and Pandit, J. (2000) J. Biol. Chem. 275, 24798–24806
41. Song, Y., Wagner, B. A., Witmer, J. R., Lehmler, H. J., and Buettner, G. R.
(2009) Proc. Natl. Acad. Sci. U.S.A. 106, 9725–9730
42. Brunmark, A., and Cadenas, E. (1988) Chem. Biol. Interact. 68, 273–298
11. Mannervik, B., Board, P. G., Hayes, J. D., Listowsky, I., and Pearson, W. R. 43. Mauzeroll, J., and Bard, A. J. (2004) Proc. Natl. Acad. Sci. U.S.A. 101,
(2005) Methods Enzymol. 401, 1–8
7862–7867
12. Board, P. G., Coggan, M., Cappello, J., Zhou, H., Oakley, A. J., and Anders,
M. W. (2008) Anal. Biochem. 374, 25–30
44. Krissinel, E., and Henrick, K. (2007) J. Mol. Biol. 372, 774–797
45. Thom, R., Cummins, I., Dixon, D. P., Edwards, R., Cole, D. J., and
Lapthorn, A. J. (2002) Biochemistry 41, 7008–7020
46. Oakley, A. J., Harnnoi, T., Udomsinprasert, R., Jirajaroenrat, K., Ketter-
man, A. J., and Wilce, M. C. (2001) Protein Sci. 10, 2176–2185
47. Holm, L., and Rosenstro¨m, P. (2010) Nucleic Acids Res. 38, Suppl.
W545–W549
13. Whitbread, A. K., Masoumi, A., Tetlow, N., Schmuck, E., Coggan, M., and
Board, P. G. (2005) Methods Enzymol. 401, 78–99
14. Burmeister, C., Lu¨ersen, K., Heinick, A., Hussein, A., Domagalski, M.,
Walter, R. D., and Liebau, E. (2008) FASEB J. 22, 343–354
15. Zakharyan, R. A., Sampayo-Reyes, A., Healy, S. M., Tsaprailis, G., Board,
P. G., Liebler, D. C., and Aposhian, H. V. (2001) Chem. Res. Toxicol. 14, 48. Vararattanavech, A., and Ketterman, A. J. (2007) Biochem. J. 406, 247–256
1051–1057
49. Ji, X., Armstrong, R. N., and Gilliland, G. L. (1993) Biochemistry 32,
16. Huang, Y., Xun, R., Chen, G., and Xun, L. (2008) J. Bacteriol. 190,
12949–12954
9172 JOURNAL OF BIOLOGICAL CHEMISTRY
VOLUME 286•NUMBER 11•MARCH 18, 2011