1
514
T. H. Kim et al. / Bioorg. Med. Chem. Lett. 21 (2011) 1512–1514
Table 2
Pancreatic lipase inhibitory activity of compounds 1–7
8. Fuchs, J. R.; Pandit, B.; Bhasin, D.; Etter, J. P.; Regan, N.; Abdelhamid, D.; Li, C.;
Lin, J.; Li, P. K. Bioorg. Med. Chem. Lett. 2009, 19, 2065.
9.
Zhang, Q.; Fu, Y.; Wang, H. W.; Gong, T.; Qin, Y.; Zhang, Z. R. Chin. Chem. Lett.
2008, 19, 281.
Compound
IC50 value (lM)
1
1
1
0. Cooke, D.; Bloom, S. Nat. Rev. Drug Disc. 2006, 5, 919.
1. Lowe, M. E. Gastroenterology 1994, 107, 1524.
2. Hill, J. O.; Hauptman, J.; Anderson, J. W.; Fujioka, K.; O’Neil, P. M.; Smith, D. K.;
Zavoral, J. H. Am. J. Clin. Nutr. 1999, 69, 1108.
3. (a) Ninomiya, K.; Matsuda, H.; Shimoda, H.; Nishida, N.; Kasajima, N.; Yoshino,
T.; Morikawa, T.; Yoshikawa, M. Bioorg. Med. Chem. Lett. 2004, 14, 1943; (b)
Yoshikawa, M.; Shimoda, H.; Nishida, N.; Takada, M.; Matsuda, H. J. Nutr. 2002,
132, 1819; (c) Nakai, M.; Fukui, Y.; Asami, S.; Toyoda-Ono, Y.; Iwashita, T.;
Shibata, H.; Mitsunaga, T.; Hashimoto, F.; Kiso, Y. J. Agric. Food. Chem. 2005, 53,
1
2
3
4
5
6
7
>250
231.5 ± 2.9
65.3 ± 2.2
12.1 ± 0.3
9.1 ± 0.2
>250
1
74.4 ± 2.1
0.6 ± 0.2
Orlistata
4593.
a
Used as positive control.
1
4. (a) Marfak, A.; Trouillas, P.; Allais, D. P.; Calliste, C. A.; Cook-Moreau, J.;
Duroux, J. L. Radiat. Res. 2003, 160, 355; (b) Marfak, A.; Trouillas, P.; Allais,
D. P.; Champavier, Y.; Calliste, C. A.; Duroux, J. L. J. Agric. Food. Chem. 2002,
5
3
0, 4827; (c) Jung, H. J.; Park, H. R.; Jo, S. K. Radiat. Phys. Chem. 2009, 78,
86.
5. Irradiation was carried out at ambient temperature, using
lipase inhibition. Two simpler phenolic compounds among the
obtained compounds, vanillic acid (6) and vanillin (7), did not
show significantly improved inhibitory activity when compared
to the other tested compounds. During the last decade, synthetic
modification of curcumin to enhance its bioactivity has been
1
a
cobalt-60
irradiator (point source AECL, IR-79, MDS Nordion International Co. Ltd,
Ottawa, ON, Canada) in the Advanced Radiation Technology Institute, Korea
Atomic Energy Research Institute (Jeongup, Korea). The source strength was
approximately 320 kCi, with dose rate at the location of the sample of 10 kGy/
h. Dosimetry was performed using 5 mm diameter alanine dosimeters (Bruker
Instruments, Rheinstetten, Germany). The dosimeters were calibrated against
an International Standard Set by the International Atomic Energy Agency
2
8,29
performed.
Apart from the previously reported biological
improvement of modified curcumin, this is the first report on the
isolation and evaluation of the biological activities of curcumin
(
Vienna, Austria). Sample solution (2 g curcumin in 200 mL MeOH) in chapped
byproducts produced by radiolytic degradation using
The results of this study established that curcumin (1) was con-
verted into small amounts of two new compounds, curculactones A
c
-ray.
vials were irradiated with 30 kGy (absorbed dose). The irradiated methanolic
solution was immediately evaporated to remove the solvent and lyophilized.
6. The dried methanolic solution was directly subjected to column
1
chromatography over
a YMC GEL ODS AQ 120-50S column (1.1 cm
(
2) and B (3), as well as four previously known compounds,
erythro-1-(3-methoxy-4-hydroxy-phenyl)-propan-1,2-diol (4),
threo-1-(3-methoxy-4-hydroxy-phenyl)-propan-1,2-diol (5), vanil-
lic acid (6), and vanillin (7) by -irradiation. Their structures,
i.d. ꢂ 37 cm) with aqueous MeOH, to yield pure compounds 2 (1.8 mg, t
R
1
6.3 min), 3 (4.3 mg, t
R
20.5 min), 4 (2.2 mg, t
R R
2.9 min), 5 (1.6 mg, t 3.4 min),
6
(1.5 mg, t 6.9 min), and 7 (3.6 mg, t
R
R
8.7 min). HPLC analysis was carried out
on a YMC-Pack ODS A-302 column (4.6 mm i.d. ꢂ 150 mm; YMC Co., Ltd) and
c
was developed at 40 °C with 10 mM H PO /10 mM KH PO /MeCN (4.3:4.3:1.4,
3
4
2
4
including four stereochemically pure compounds (2–5), were
established on the basis of spectroscopic data interpretation.
Compounds 2–5 were evaluated for their inhibitory activities
against pancreatic lipase, and compounds 3 and 4 were the most
potent molecules with much lower IC50 values than that of original
curcumin or the other products tested. In addition, it can be con-
flow rate: 1.0/min, detection: 280 nm).
1
7. Peng, K.; Chen, F.; She, X.; Yang, C.; Cui, Y.; Pan, X. Tetrahedron Lett. 2005, 46,
217.
8. Ma, J.; Jin, X.; Yang, L.; Liu, Z. L. Phytochemistry 2004, 65, 1137.
1
1
19. He, X.; Liu, R. H. J. Agric. Food. Chem. 2006, 54, 7069.
2
2
0. Sun, K.; Li, X.; Wang, J.; Sha, Y. Chem. Pharm. Bull. 2004, 52, 1483.
20
1. Curculactone A (2): colorless oil, ½
aꢀ
ꢁ7.0° (c 0.5, MeOH); UV kmax MeOH nm
13 +
D
1
(
log
HREIMS m/z 222.0890 [M] (calcd for C12
2. Okada, Y.; Ishimaru, A.; Suzuki, R.; Okuyama, T. J. Nat. Prod. 2004, 67, 103.
3. Curculactone B (3): colorless oil, ½
e): 229 (3.71), 281 (1.70); H and C NMR, see Table 1; EIMS m/z 222 [M] ,
+
cluded that
c-irradiation of curcumin may be a favorable method
14 4
H O , 222.0892).
2
2
for modifying structure and enhancing bioactivity. Further
isolation and biological evaluation of non-phenolic constituents
are currently in progress.
2
0
a
ꢀ
ꢁ24.5° (c 0.2, MeOH); UV kmax MeOH nm
D
1
1
3
+
(
log
e): 229 (3.73), 281 (1.72); H and C NMR, see Table 1; EIMS m/z 222 [M] ,
+
HREIMS m/z 222.0891 [M] (calcd for C12
14 4
H O , 222.0892).
2
2
2
4. Delazar, A.; Biglari, F.; nazemiyeh, H.; Talebpour, A. H.; Nahar, L.; Sarker, S. D.
Phytochemistry 2006, 67, 2176.
5. Balboul, B. A. A. A.; Ahmed, A. A.; Otsuka, H.; Adams, A. D. Phytochemistry 1996,
Acknowledgments
4
2, 1191.
2
0
6. Erythro-1-(3-methoxy-4-hydroxy-phenyl)-propan-1,2-diol (4): colorless oil, ½
a
ꢀ
The research discussed herein was supported by the Basic Sci-
ence Research Program through the National Research Foundation
of Korea (NRF), which is funded by the Ministry of Education, Sci-
ence and Technology (2010-0022783).
D
1
ꢁ10.0° (c 0.1, MeOH); UV kmax MeOH nm (log
NMR (CD OD, 600 MHz): d 6.97 (1H, d, J = 1.8 Hz, H-2 ), 6.77 (1H, dd, J = 7.8,
1.8 Hz, H-6 ), 6.73 (1H, d, J = 7.8 Hz, H-5 ), 4.38 (1H, d, J = 5.4 Hz, H-1), 3.84
e): 229 (3.00), 280 (1.35); H
0
3
H
0
0
0
(3H, s, MeO-3 ), 3.82 (1H, dq, J = 6.6, 5.4 Hz, H-2), 1.11 (3H, d, J = 6.6 Hz, H-3);
13
0
0
0
C NMR (CD OD, 150 MHz): 148.7 (C-3 ), 146.8 (C-4 ), 134.8 (C-1 ), 120.9 (C-
3
0
0 0 0
), 115.6 (C-5 ), 111.6 (C-2 ), 79.0 (C-1), 72.4 (C-2), 59.3 (C-3 MeO), 18.5 (C-
+ +
6
Supplementary data
3); EIMS m/z 198 [M] , HREIMS m/z 198.0893 [M] (calcd for C10
14 4
H O ,
198.0892).
2
7. Assay of pancreatic lipase activity: The ability of the compounds to inhibit
porcine pancreatic lipase was evaluated using the previously reported method
with a minor modification (Kim, J. H.; Kim, H. J.; Park, H. W.; Youn, S. H.; Choi,
D. Y.; Shin, C. S. FEMS Microbiol. Lett. 2007, 276, 93.). Briefly, an enzyme buffer
was prepared by the addition of 30
pancreatic lipase (Sigma, St. Louis, MO) in 10 mM MOPS (morpholine-
propanesulphonic acid) and 1 mM EDTA, pH 6.8] to 850 L of Tris buffer
(100 mM Tris–HC1 and 5 mM CaCl , pH 7.0). Then, 100 L of the compounds at
the test concentration or orlistat (Roche, Basel, Switzerland) was mixed with
880 L of the enzyme-buffer, and incubated for 15 min at 37 °C, with 20 L of
the substrate solution [10 mM p-NPB (p-nitrophenylbutyrate) in dimethyl
formamide] added and the enzymatic reactions allowed to proceed for 15 min
at 37 °C. The pancreatic lipase activity was determined by measuring the
hydrolysis of p-NPB to p-nitrophenol at 405 nm using an ELISA reader (Tecan,
Infinite F200, Austria). Inhibition of the lipase activity was expressed as the
percentage decrease in the OD when porcine pancreatic lipase was incubated
with the test compounds.
lL (10 units) of a solution of porcine
References and notes
l
1
.
.
Chattopadhyay, I.; Biswas, K.; Bandyopadhyay, U.; Banerjee, R. K. Curr. Sci.
004, 87, 44.
l
2
2
2
Gafner, S.; Lee, S. K.; Cuendet, M.; Barthelemy, S.; Vergnes, L.; Labidalle, S.;
Mehta, R. G.; Boone, C. W.; Pezzuto, J. M. Phytochemistry 2004, 65, 2849.
Ramsewak, R. S.; DeWitt, D. L.; Nair, M. G. Phytomedicine 2000, 7, 303.
Simon, A.; Allais, D. P.; Duroux, J. L.; Basly, J. P.; Durand-Fontanier, S.; Delage, C.
Cancer Lett. 1998, 129, 111.
l
l
3
4
.
.
5.
6.
7.
Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P. S. Planta
Med. 1998, 64, 353.
Wang, Y. J.; Pan, M. H.; Cheng, A. L.; Lin, L.; Ho, Y. S.; Hsieh, C. Y. J. Pharm.
Biomed. Anal. 1997, 15, 1867.
Adams, B. K.; Ferstl, E. M.; Davis, M. C.; Herold, M.; Kurtkaya, S.; Camalier, R. F.;
Hollingshead, M. G.; Kaur, G.; Sausville, E. A.; Rickles, F. R.; Snyder, J. P.; Liotta,
D. C.; Shoji, M. Bioorg. Med. Chem. 2004, 12, 3871.
28. Amolins, M. W.; Peterson, L. B.; Blagg, B. S. J. Bioorg. Med. Chem. 2009, 17, 360.
29. Liang, G.; Yang, S.; Jiang, L.; Zhao, Y.; Shao, L.; Xiao, J.; Ye, F.; Li, Y.; Li, X. Chem.
Pharm. Bull. 2008, 56, 162.