Organic & Biomolecular Chemistry
Communication
1
1 R. Chapman, M. Danial, M. L. Koh, K. A. Jolliffe and
S. Perrier, Chem. Soc. Rev., 2012, 41, 6023–6041.
Conclusions
We have synthesised a new C
equipped with an aggregation induced emission luminophore.
An alternating phenyl alanine–histidine pentapeptide 13 J. D. Hartgerink, E. Beniash and S. I. Stupp, Science, 2001,
sequence FHFHF was extended with a water solubilising den- 294, 1684–1688.
dritic polycationic group and coupled to the hydrophobic 4,5- 14 J. D. Hartgerink, E. Beniash and S. I. Stupp, Proc. Natl.
bis-(phenylthio)phthalonitrile core. In water a combination of Acad. Sci. U. S. A., 2002, 99, 5133–5138.
hydrophobic shielding and β-sheet formation leads to aniso- 15 G. A. Silva, C. Czeisler, K. L. Niece, E. Beniash,
2
-symmetric peptide amphiphile 12 J. Montenegro, M. R. Ghadiri and J. R. Granja, Acc. Chem.
Res., 2013, 46, 2955–2965.
tropic growth into ordered rod-like micelles. These nano-
D. A. Harrington, J. A. Kessler and S. I. Stupp, Science,
structures are remarkably stable, and the aggregation induced
2004, 303, 1352–1355.
luminescence properties were used to estimate the upper limit 16 A. M. Smith, R. J. Williams, C. Tang, P. Coppo,
for the critical aggregation concentration of <200 nM. The
nanostructures are robust and stay intact in neutral and acidic
R. F. Collins, M. L. Turner, A. Saiani and R. V. Ulijn, Adv.
Mater., 2008, 20, 37–41.
buffer, in phosphate buffered saline and critically also in the 17 S. Fleming and R. V. Ulijn, Chem. Soc. Rev., 2014, 43, 8150–
presence of serum albumin. Compared to conventional design 8177.
strategies we will be able to combine this new supramolecular 18 V. Percec, A. E. Dulcey, M. Peterca, M. Ilies,
synthon with our previously reported route for ampholytic
copolymers in order to prepare highly robust, yet dynamic and
M. J. Sienkowska and P. A. Heiney, J. Am. Chem. Soc., 2005,
127, 17902–17909.
tuneable pH-labile nanorods as delivery vehicles for appli- 19 H. Frisch, J. P. Unsleber, D. Lüdeker, M. Peterlechner,
cations in the intracellular release of cargo material.
G. Brunklaus, M. Waller and P. Besenius, Angew. Chem.,
Int. Ed., 2013, 52, 10097–10101.
2
2
2
2
0 K. Petkau-Milroy and L. Brunsveld, Org. Biomol. Chem.,
2013, 11, 219–232.
Acknowledgements
1 Y. Bae, S. Fukushima, A. Harada and K. Kataoka, Angew.
Chem., Int. Ed., 2003, 42, 4640–4643.
2 A. K. H. Hirsch, F. Diederich, M. Antonietti and
H. G. Börner, Soft Matter, 2010, 6, 88–91.
3 J. Shi, A. R. Votruba, O. C. Farokhzad and R. Langer, Nano
Lett., 2010, 10, 3223–3230.
We gratefully acknowledge the support from the DFG colla-
borative research centre SFB 1066 [D. S. and P. B.].
Notes and references
24 A. G. Cheetham, P. Zhang, Y.-A. Lin, L. L. Lock and H. Cui,
J. Am. Chem. Soc., 2013, 135.
‡
In methanol we observe an intensity weighted average fluorescence lifetime
2
5 K. Miyata, N. Nishiyama and K. Kataoka, Chem. Soc. Rev.,
012, 41, 2562–2574.
C. Fouquey, J.-M. Lehn and A.-M. Levelut, Adv. Mater., 26 J. A. Hubbell and A. Chilkoti, Science, 2012, 337, 303–305.
τ = 3 ns, which is typical of small organic fluorophores (Fig. S3–S6†).
2
1
2
3
1
990, 2, 254–257.
J.-M. Lehn, Angew. Chem., Int. Ed. Engl., 1990, 29, 1304–
319.
27 J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz and
P. Couvreur, Chem. Soc. Rev., 2013, 42, 1147–1235.
28 M. Talelli, M. Barz, C. J. F. Rijcken, F. Kiessling,
W. E. Hennink and T. Lammers, Nano Today, 2015, 10, 93–
117.
29 J. S. Rudra, Y. F. Tian, J. P. Jung and J. H. Collier, Proc. Natl.
Acad. Sci. U. S. A., 2010, 107, 622–627.
30 J. S. Rudra, T. Sun, K. C. Bird, M. D. Daniels,
J. Z. Gasiorowski, A. S. Chong and J. H. Collier, ACS Nano,
2012, 6, 1557–1564.
1
R. P. Sijbesma, F. H. Beijer, L. Brunsveld, B. J. B. Folmer,
K. J. H. K. Hirschberg, R. F. M. Lange, J. K. L. Lowe and
E. W. Meijer, Science, 1997, 278, 1601–1604.
4
5
6
L. Brunsveld, B. J. B. Folmer, E. W. Meijer and
R. P. Sijbesma, Chem. Rev., 2001, 101, 4071–4097.
D. Zhao and J. S. Moore, Org. Biomol. Chem., 2003, 1, 3471–
3
491.
T. F. A. de Greef, M. M. J. Smulders, M. Wolffs, A. P. H. 31 M. A. Swartz, S. Hirosue and J. A. Hubbell, Sci. Transl. Med.,
J. Schenning, R. P. Sijbesma and E. W. Meijer, Chem. Rev.,
009, 109, 5687–5754.
Z. Chen, A. Lohr, C. R. Saha-Möller and F. Würthner, Chem.
Soc. Rev., 2009, 38, 564–584.
2012, 4, 148rv149.
2
32 L. Nuhn, S. Hartmann, B. Palitzsch, B. Gerlitzki,
E. Schmitt, R. Zentel and H. Kunz, Angew. Chem., Int. Ed.,
2013, 52, 10652–10656.
7
8
9
C. Rest, R. Kandanelli and G. Fernandez, Chem. Soc. Rev., 33 S. R. Bull, M. O. Guler, R. E. Bras, T. J. Meade and
015, 44, 2543–2572. S. I. Stupp, Nano Lett., 2004, 5, 1–4.
E. Krieg, M. M. C. Bastings, P. Besenius and 34 P. Besenius, J. L. M. Heynens, R. Straathof,
2
B. Rybtchinski, Chem. Rev., 2016, 116, 2414–2477.
0 T. Aida, E. W. Meijer and S. I. Stupp, Science, 2012, 335,
13–817.
M. M. L. Nieuwenhuizen, P. H. H. Bomans, E. Terreno,
S. Aime, G. J. Strijkers, K. Nicolay and E. W. Meijer, Contrast
Media Mol. Imaging, 2012, 7, 356–361.
1
8
This journal is © The Royal Society of Chemistry 2016
Org. Biomol. Chem.