Please do not adjust margins
New Journal of Chemistry
Page 8 of 10
ARTICLE
Journal Name
1
2
3
4
5
6
7
8
9
have the structure [KEu(dbm)4]n. The shape of the spectra
differs somewhat from that presented in our work by the
splitting of the main band, probably because of the lower
temperature. The spectrum of the complex ”MEu(dbm)4”
recorded at 300K in another work is almost identical to our
spectrum. In the same work, the spectrum of “Eu(dbm)3(H2O)”
Acknowledgements
DOI: 10.1039/C9NJ02059D
Dr. A.P. Zubareva and Dr. B.M. Kuchumov are gratefully
acknowledged for elemental analysis. Dr. A.A. Ryadun is
thanked for recording of the photoluminescence spectra. The
support provided by the students I.V. Lyakisheva and I.A.
Trofimov. We acknowledge the European Synchrotron
Radiation Facility for provision of synchrotron radiation
facilities.
14
is shown; it reveals the main band not split, probably because
5
of low resolution. In a later work, a split D0→7F2 band was
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
demonstrated for [Eu(dbm)3(H2O)] 46. We determined the
absolute quantum yields (Q) for the Eu complexes obtained. The
values
for
the
complexes
[KEu(dbm)4]n
and
Notes and references
[KEu(Me2CO)(dbm)4]2 are significantly higher compared to
[Eu4(dbm)10(OH)2] and [Eu(dbm)3(H2O)] due to quenching of the
luminescence of the latter through O–H oscillations, which is
common for lanthanide complexes. For all compounds
1. V. V. Utochnikova, E. V. Latipov, A. I. Dalinger, Y. V. Nelyubina,
A. A. Vashchenko, M. Hoffmann, A. S. Kalyakina, S. Z. Vatsadze, U.
Schepers, S. Bräse and N. P. Kuzmina, J. Lumin., 2018, 202, 38-46.
2. V. M. Pereira, A. L. Costa, J. Feldl, T. M. R. Maria, J. S. Seixas
de Melo, P. Martín-Ramos, J. Martín-Gil and M. Ramos Silva,
Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 172, 25-33.
3. Z. Ahmed and K. Iftikhar, Polyhedron, 2015, 85, 570-592.
4. S. N. Podyachev, S. N. Sudakova, G. S. Gimazetdinova, N. A.
Shamsutdinova, V. V. Syakaev, T. A. Barsukova, N. Iki, D. V. Lapaev
and A. R. Mustafina, New J. Chem., 2017, 41, 1526-1537.
5. Y.-Y. Xu, P. Chen, T. Gao, H.-F. Li and P.-F. Yan, CrystEngComm,
2019, 21, 964-970.
6. P. C. Andrews, F. Hennersdorf, P. C. Junk and D. T. Thielemann,
Eur. J. Inorg. Chem., 2014, 2014, 2849-2854.
7. D. T. Thielemann, A. T. Wagner, E. Rösch, D. K. Kölmel, J. G.
Heck, B. Rudat, M. Neumaier, C. Feldmann, U. Schepers, S. Bräse
and P. W. Roesky, JACS, 2013, 135, 7454-7457.
8. P. C. Andrews, D. H. Brown, B. H. Fraser, N. T. Gorham, P. C.
Junk, M. Massi, T. G. St Pierre, B. W. Skelton and R. C. Woodward,
Dalton Trans., 2010, 39, 11227-11234.
9. A. T. Wagner and P. W. Roesky, Eur. J. Inorg. Chem., 2016,
2016, 782-791.
10. P. C. Andrews, W. J. Gee, P. C. Junk and M. Massi, New J.
Chem., 2013, 37, 35-48.
11. S. Datta, V. Baskar, H. Li and P. W. Roesky, Eur. J. Inorg. Chem.,
2007, 2007, 4216-4220.
discussed, the higher
Q is observed using excitation
wavelengths of 415–435 nm than of 290 – 300 nm. This
phenomenon appears to be due to a higher probability of
luminescence quenching during energy transfer to Eu(III) from
higher energy levels of ligands compared to lower energy levels.
Conclusions
This work reports an overview of known procedures for the
synthesis of dibenzoylmethanide complexes of lanthanides,
which may contain water molecules or hydroxy ligands. Based
on the literature data and the experiments carried out in this
work, we can arrive at the following conclusions: using
methanol as a solvent, varying the base and the ratio of LnCl3
and Hdbm, it is possible selectively to obtain five types of
complexes:
[Ln(dbm)3(H2O)],
[Ln4(dbm)10(OH)2],
[Ln5(dbm)10(OH)5], [KLn(dbm)4]n and [KLn(Me2CO)(dbm)4]2. The
number of possible products is apparently incomplete, and
small changes in the reaction conditions and in-depth analysis
of the products can lead to novel species, e.g.
12. J. Zaharieva, M. Milanova and D. Todorovsky, Synth. React.
Inorg. Met.-Org. Chem., 2010, 40, 651-661.
13. S. J. Lyle and A. D. Witts, Inorg. Chim. Acta, 1971, 5, 481-484.
14. L. R. Melby, N. J. Rose, E. Abramson and J. C. Caris, JACS, 1964,
86, 5117-5125.
15. A. Lennartson, M. Vestergren and M. Håkansson, Chem. Eur.
J., 2005, 11, 1757-1762.
16. A. Zalkin, D. H. Templeton and D. G. Karraker, Inorg. Chem.,
1969, 8, 2680-2684.
[Nd3(dbm)8(OH)(H2O)]·and
[KEu(dbm)3(OBz)]n
(OBz
=
benzoate). No influence of the nature of the lanthanide on the
formation of the tetrakis-complexes was found; however, the
formation of [Ln4(dbm)10(OH)2] or [Ln5(dbm)10(OH)5] in some
cases depends on the nature of the lanthanide. In the solid-state
photoluminescence spectra of the Eu complexes prepared, the
main band is observed at 612 nm, which has different splitting
depending on the symmetry of the Eu environment. Absolute
quantum yields of luminescence also depend on the structure
of the complexes and reach 42% in the case of
[KEu(Me2CO)(dbm)4]2. We prepared heterolanthanide
complexes [ErxYb5–x(dbm)10(OH)5] (x = 1.2, 2.0). High-resolution
powder XRD analysis revealed they are solid solutions with a
tetragonal structure similar to the parent Er and Yb compounds.
Combinatorics of lanthanides distribution in the molecule and
over the crystal is subject to additional study.
17. X.-L. Li, Y.-L. Gao, X.-L. Feng, Y.-X. Zheng, C.-L. Chen, J.-L. Zuo
and S.-M. Fang, Dalton Trans., 2012, 41, 11829-11835.
18. A. F. Kirby and R. A. Palmer, Inorg. Chem., 1981, 20, 1030-
1033.
19. V. Baskar and P. W. Roesky, Z. Anorg. Allg. Chem., 2005, 631
,
2782-2785.
20. P. C. Andrews, T. Beck, B. H. Fraser, P. C. Junk, M. Massi, B.
Moubaraki, K. S. Murray and M. Silberstein, Polyhedron, 2009, 28
2123-2130.
,
21. P. W. Roesky, G. Canseco-Melchor and A. Zulys, Chem.
Commun., 2004, 738-739.
22. M. T. Gamer, Y. Lan, P. W. Roesky, A. K. Powell and R. Clérac,
Inorg. Chem., 2008, 47, 6581-6583.
23. C. P. Hauser, D. T. Thielemann, M. Adlung, C. Wickleder, P. W.
Roesky, C. K. Weiss and K. Landfester, Macromol. Chem. Phys.,
2011, 212, 286-296.
24. S. Petit, F. Baril-Robert, G. Pilet, C. Reber and D. Luneau,
Dalton Trans., 2009, 6809-6815.
Conflicts of interest
There are no conflicts to declare.
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins