Mendeleev Commun., 2018, 28, 364–365
was a single diastereomer. This procedure was extended towards
preparation of the set of enantiomerically pure tetrazolyl-substituted
carboxylic acids 3a–f (see Scheme 1, step iv).
In conclusion, the reaction of chiral OBO isocyano derivatives
1 with azidotrimethylsilane was investigated. Trifluoroethanol
was found the solvent of choice affecting the cycloaddition to
afford the target tetrazoles in up to 92% yield. Subsequent acidic
hydrolysis (TFA–HCl) leads to chiral a-(tetrazol-1-yl)-substituted
carboxylic acids in up to 89% yield.
3 (a) S. Bhandari, M. F. Mahon, K. C. Molloy, J. S. Palmer and S. F. Sayers,
J. Chem. Soc., Dalton Trans., 2000, 1053; (b) C. H. Brubaker, Jr., J. Am.
Chem. Soc., 1960, 82, 82; (c) N. A. Daugherty and C. H. Brubaker, Jr.,
J. Inorg. Nucl. Chem., 1961, 22, 193; (d) N. A. Daugherty and C. H.
Brubaker, J. Am. Chem. Soc., 1961, 83, 3779.
4 (a) G. L. Gilbert and C. H. Brubaker, Jr., Inorg. Chem., 1963, 2, 1216;
(b) P. L. Franke and W. L. Groeneveld, Trans. Met. Chem., 1981, 6, 54;
(c) M. M. Degtyarik, P. N. Gaponik, V. N. Naumenko, A. I. Lesnikovich
and M. V. Nikanovich, Spectrochim. Acta, Part A, 1987, 43, 349;
(d) S. Poturovic, D. Lu, M. J. Heeg and C. H. Winter, Polyhedron, 2008,
27, 3280; (e) L. L. Garber and C. H. Brubaker, Jr., J. Am. Chem. Soc., 1966,
88, 4266; (f)A.A. Soliman, M. M. Khattab and W. Linert, J. Coord. Chem.,
2005, 58, 421; (g) P. J. van Koningsbruggen, Y. Garcia, G. Bravic,
D. Chasseau and O. Kahn, Inorg. Chim. Acta., 2001, 326, 101.
5 (a) E. A. Popova and R. E. Trifonov, Russ. Chem. Rev., 2015, 84, 891;
(b) D. Habibi, P. Rahmani, F.Ahmadi, H. Bokharaei and Z. Kaboudvand,
Lett. Org. Chem., 2014, 11, 145.
This study was supported by Grant for Leading Scientific Schools
(no. 4687.2018.3). The authors acknowledge M. V. Lomonosov
Moscow State University Program of Development for partial
support in measuring of NMR spectra, Thermo Fisher Scientific
Inc., MS Analytica (Moscow, Russia), and personally Professor
A. Makarov for providing mass spectrometry equipment for this
work.
6 (a) A. Maleki and A. Sarvary, RSC Adv., 2015, 5, 60938; (b) P. A. S.
Smith and N. W. Kalenda, J. Org. Chem., 1958, 23, 1599.
7 (a) A. G. Zhdanko and V. G. Nenajdenko, J. Org. Chem., 2009, 74,
884; (b) A. I. Konovalov, I. S. Antipin, V. A. Burilov, T. I. Madzhidov,
A. R. Kurbangalieva, A. V. Nemtarev, S. E. Solovieva, I. I. Stoikov, V. A.
Mamedov, L.Ya. Zakharova, E. L. Gavrilova, O. G. Sinyashin, I.A. Balova,
A. V. Vasilyev, I. G. Zenkevich, M.Yu. Krasavin, M. A. Kuznetsov, A. P.
Molchanov, M. S. Novikov,V.A. Nikolaev, L. L. Rodina,A. F. Khlebnikov,
I. P. Beletskaya, S. Z. Vatsadze, S. P. Gromov, N. V. Zyk, A. T. Lebedev,
D.A. Lemenovskii, V. S. Petrosyan, V. G. Nenaidenko, V. V. Negrebetskii,
Yu. I. Baukov, T. A. Shmigol’, A. A. Korlyukov, A. S. Tikhomirov,
A. E. Shchekotikhin, V. F. Traven’, L. G. Voskresenskii, F. I. Zubkov,
O. A. Golubchikov, A. S. Semeikin, D. B. Berezin, P. A. Stuzhin, V. D.
Filimonov, E. A. Krasnokutskaya, A. Yu. Fedorov, A. V. Nyuchev,
V. Yu. Orlov, R. S. Begunov, A. I. Rusakov, A. V. Kolobov, E. R. Kofanov,
O. V. Fedotova, A. Yu. Egorova, V. N. Charushin, O. N. Chupakhin,
Yu. N. Klimochkin V. A. Osyanin, A. N. Reznikov, A. S. Fisyuk,
G. P. Sagitullina, A. V. Aksenov, N. A. Aksenov, M. K. Grachev, V. I.
Maslennikova, M. P. Koroteev, A. K. Brel’, S. V. Lisina, S. M. Medvedeva,
Kh. S. Shikhaliev, G. A. Suboch, M. S. Tovbis, L. M. Mironovich, S. M.
Ivanov, S. V. Kurbatov, M. E. Kletskii, O. N. Burov, K. I. Kobrakov and
D. N. Kuznetsov, Russ. J. Org. Chem., 2018, 54, 157 (Zh. Org. Khim.,
2018, 54, 161).
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2018.07.007.
References
1 (a) G. I. Koldobskii and V. A. Ostrovskii, Russ. Chem. Rev., 1994, 63, 797
(Usp. Khim., 1994, 63, 847); (b) P. N. Gaponik, S. V. Voitekhovich and
O. A. Ivashkevich, Russ. Chem. Rev., 2006, 75, 507 (Usp. Khim., 2006,
75, 569); (c) I. S. Antipin, M. A. Kazymova, M. A. Kuznetsov, A. V. Vasilyev,
M. A. Ishchenko, A. A. Kiryushkin, L. M. Kuznetsova, S. V. Makarenko,
V. A. Ostrovskii, M. L. Petrov, O. V. Solod, Yu. G. Trishin, I. P. Yakovlev,
V. G. Nenaidenko, E. K. Beloglazkina, I. P. Beletskaya, Yu. A. Ustynyuk,
P. A. Solov’ev, I. V. Ivanov, E. V. Malina, N. V. Sivova, V. V. Negrebetskii,
Yu. I. Baukov, N. A. Pozharskaya, V. F. Traven’, A. E. Shchekotikhin,
A. V. Varlamov, T. N. Borisova,Yu. A. Lesina, E. A. Krasnokutskaya, S. I.
Rogozhnikov. S. N. Shurov, T. P. Kustova, M. V. Klyuev, O. G. Khelevina,
P. A. Stuzhin, A. Yu. Fedorov, A. V. Gushchin, V. A. Dodonov, A. V.
Kolobov, V. V. Plakhtinskii, V.Yu. Orlov, A. P. Kriven’ko, O.V. Fedotova,
N. V. Pchelintseva, V. N. Charushin, O. N. Chupakhin,Yu. N. Klimochkin,
A.Yu. Klimochkina, V. N. Kuryatnikov,Yu. A. Malinovskaya, A. S. Levina,
O. E. Zhuravlev, L. I. Voronchikhina, A. S. Fisyuk, A. V. Aksenov, N. A.
Aksenov and I. V. Aksenova, Russ. J. Org. Chem., 2017, 53, 1275 (Zh.
Org. Khim., 2017, 53, 1257); (d) S. G. Zlotin, A. M. Churakov, I. L.
Dalinger, O. A. Luk’yanov, N. N. Makhova, A. Yu. Sukhorukov and
V. A. Tartakovsky, Mendeleev Commun., 2017, 27, 535; (e) A. V. Kormanov,
T. K. Shkineva and I. L. Dalinger, Mendeleev Commun., 2017, 27, 462.
2 L. V. Myznikov, A. Hrabalek and G. I. Koldobskii, Chem. Heterocycl.
Compd., 2007, 43, 1 (Khim. Geterotsikl. Soedin., 2007, 3).
8 E. G. Corey and N. Rajn, Tetrahedron Lett., 1983, 24, 5571.
9 (a) A. V. Gulevich, I. V. Shpilevaya and V. G. Nenajdenko, Eur. J. Org.
Chem., 2009, 3801; (b) A. G. Zhdanko, A. V. Gulevich and V. G.
Nenajdenko, Tetrahedron, 2009, 65, 4692; (c) O. I. Shmatova and
V. G. Nenajdenko, J. Org. Chem., 2013, 78, 9214.
10 T. Jin, S. Kamijo and Y. Yamamoto, Tetrahedron Lett., 2004, 45, 9435.
11 Y. Wang, P. Patil and A. Dömling, Synthesis, 2016, 48, 3701.
Received: 22nd February 2018; Com. 18/5489
– 365 –