Inorganic Chemistry
Article
(23) van Rij, C. M.; Sharkey, R. M.; Goldenberg, D. M.; Frielink, C.;
Molkenboer, J. D.; Franssen, G. M.; van Weerden, W. M.; Oyen, W. J.;
Boerman, O. C. Imaging of prostate cancer with immuno-PET and
immuno-SPECT using a radiolabeled anti-EPG-1 monoclonal anti-
body. J. Nucl. Med. 2011, 52, 1601−1607.
(24) Dijkers, E. C. F.; Kosterink, J. G. W.; Rademaker, A. P.; Perk, L.
R.; van Dongen, G. A. M. S.; Bart, J.; de Jong, J. R.; de Vries, E. G. E.;
Lub-de Hooge, M. N. Development and characterisation of clinical-
grade 89Zr-trastuzumab for HER2/neu imminoPET imaging. J. Nucl.
Med. 2009, 50, 974−981.
with 89Zr4+: Comparison with desferrioxamine B. Dalton Trans. 2015,
44, 4884−4900.
(40) Deri, M. A.; Ponnala, S.; Kozlowski, P.; Burton-Pye, B. P.; Cicek,
H. T.; Hu, C.; Lewis, J. S.; Francesconi, L. C. p-SCN-Bn-HOPO: a
superior bifunctional chelator for 89Zr immunoPET. Bioconjugate
Chem. 2015, 26, 2579−2591.
(41) Rudd, S. E.; Roselt, P.; Cullinane, C.; Hicks, R. J.; Donnelly, P.
S. A desferrioxmaine B squaramide ester for the incorporation of
zirconium-89 into antibodies. Chem. Commun. 2016, 52, 11889−
11892.
(25) Holland, J. P.; Caldas-Lopes, E.; Divilov, V.; Longo, V. A.;
Taldone, T.; Zatorska, D.; Chiosis, G.; Lewis, J. S. Measuring the
pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu
expression in mice using 89Zr-DFO-trastuzumab. PLoS One 2010, 5,
e8859.
(26) Petrik, M.; Zhai, C.; Novy, Z.; Urbanek, L.; Haas, H.;
Decristoforo, C. In vitro and in vivo comparison of selected Ga-68
adn Zr-89 labelled siderophores. Mol. Imaging Biol. 2016, 18, 344−
352.
(27) Jauw, Y. W. S.; Menke-van der Houven van Oordt, C. W.;
Hoekstra, O. S.; Hendrikse, N. H.; Vugts, D. J.; Zijlstra, J. M.;
Huisman, M. C.; van Dongen, G. A. M. S. Immuno-positron emission
tomography with zirconium-89-labeled monoclonal antibodies in
oncology: waht can we learn from initial clinical trials? Front.
Pharmacol. 2016, 7 (131), 15.
(28) Holland, J. P.; Vasdev, N. Charting the mechanism and
reactivity of zirconium oxalate with hydroxamate ligands using density
functional theory: Implications in new chelate design. Dalton Trans.
2014, 43, 9872−9884.
́
(42) Guerard, F.; Lee, Y.-S.; Brechbiel, M. W. Rational design,
synthesis, and evaluation of tetrahydroxamic acid chelators for stable
complexation of zirconium(IV). Chem. - Eur. J. 2014, 20, 5584−5591.
(43) Boros, E.; Holland, J. P.; Kenton, N.; Rotile, N. J.; Caravan, P.
Macrocycle-based hydroxamate ligands for complexation and
immunoconjugation of 89zirconium for positron emission tomography
(PET) imaging. ChemPlusChem 2016, 81, 274−281.
(44) McMurry, T. J.; Raymond, K. N.; Smith, P. H. Molecular
recognition and metal ion template synthesis. Science 1989, 244, 938−
943.
(45) McMurry, T. J.; Rodgers, S. J.; Raymond, K. N. Template and
stepwise synthesis of a macrobicyclic catechoylamide ferric ion
sequestering agent. J. Am. Chem. Soc. 1987, 109, 3451−3453.
́
(46) Kachadourian, R.; Chuilon, S.; Merienne, C.; Kunesch, G.;
Deroussent, A. A New Total Synthesis of Ferrioxamine E through
Metal-templated Cyclic Trimerization. Supramol. Chem. 1997, 8, 301−
308.
(47) Lifa, T.; Tieu, W.; Hocking, R. K.; Codd, R. Forward and
reverse (retro) iron(III)- or gallium(III)-desferrioxamine E and ring-
expanded analogs prepared using metal-templated synthesis from endo-
hydroxamic acid monomers. Inorg. Chem. 2015, 54, 3573−3583.
(48) Giordanetto, F.; Kihlberg, J. Macrocyclic drugs and clinical
candidates: What can medicinal chemists learn from their properties? J.
Med. Chem. 2014, 57, 278−294.
(49) Driggers, E. M.; Hale, S. P.; Lee, J.; Terrett, N. K. The
exploration of macrocycles for drug discovery - an underexploited
structural class. Nat. Rev. Drug Discovery 2008, 7, 608−624.
(50) Marsault, E.; Peterson, M. L. Macrocycles are great cycles:
Applications, opportunities, and challenges of synthethic macrocycles
in drug discovery. J. Med. Chem. 2011, 54, 1961−2004.
(51) Heinis, C. Drug discovery. Tools and rules for macrocycles. Nat.
Chem. Biol. 2014, 10, 696−698.
(52) Marti-Centelles, V.; Pandey, M. D.; Burguete, M. I.; Luis, S. V.
Macrocyclization reactions: the importance of conformational,
configurational, and template-induced preorganisation. Chem. Rev.
2015, 115, 8736−8834.
(53) Marti-Centelles, V.; Burguete, M. I.; Luis, S. V. Macrocycle
synthesis by chloride-templated amide bond formation. J. Org. Chem.
2016, 81, 2143−2147.
(54) Feistner, G. J.; Stahl, D. C.; Gabrik, A. H. Proferrioxamine
siderophores of Erwinia amylovora. A capillary liquid chromato-
graphic/electrospray tandem mass spectrometric study. Org. Mass
Spectrom. 1993, 28, 163−175.
(55) Nishio, T.; Tanaka, N.; Hiratake, J.; Katsube, Y.; Ishida, Y.; Oda,
J. Isolation and structure of the novel dihydroxamate siderophore
alcaligin. J. Am. Chem. Soc. 1988, 110, 8733−8734.
(56) Takahashi, A.; Nakamura, H.; Kameyama, T.; Kurasawa, S.;
Naganawa, H.; Okami, Y.; Takeuchi, T.; Umezawa, H.; Iitaka, Y.
Bisucaberin, a new siderophore, sensitizing tumor cells to macrophage-
mediated cytolysis. II. Physico-chemical properties and structure
determination. J. Antibiot. 1987, 40, 1671−1676.
(57) Ledyard, K. M.; Butler, A. Structure of putrebactin, a new
dihydroxamate siderophore produced by Shewanella putrefaciens. JBIC,
J. Biol. Inorg. Chem. 1997, 2, 93−97.
(29) Holland, J. P.; Divilov, V.; Bander, N. H.; Smith-Jones, P. M.;
Larson, S. M.; Lewis, J. S. 89Zr-DFO-J591 for immunoPET of prostate-
specific membrane antigen expression in vivo. J. Nucl. Med. 2010, 51,
1293−1300.
(30) Abou, D. S.; Ku, T.; Smith-Jones, P. M. In vivo biodistribution
and accumulation of 89Zr in mice. Nucl. Med. Biol. 2011, 38, 675−681.
(31) Nayak, T. K.; Garmestani, K.; Milenic, D. E.; Brechbiel, M. W.
PET and MRI of metastatic peritoneal and pulmonary colorectal
cancer in mice with human epidermal growth factor receptor 1-
targeted 89Zr-labeled panitumumab. J. Nucl. Med. 2012, 53, 113−120.
(32) Patra, M.; Bauman, A.; Mari, C.; Fischer, C. A.; Blacque, O.;
Haussinger, D.; Gasser, G.; Mindt, T. L. An octadentate bifunctional
chelating agent for the development of stable zirconium-89 based
molecular imaging probes. Chem. Commun. 2014, 50, 11523−11525.
(33) Vugts, D. J.; Klaver, C.; Sewing, C.; Poot, A. J.; Adamzek, K.;
Huegli, S.; Mari, C.; Visser, G. W. M.; Valverde, I. E.; Gasser, G.;
Mindt, T. L.; van Dongen, G. A. M. S. Comparison of the octadentate
bifunctional chelator DFO*-pPhe-NCS and the clinically used
hexadentate bifunctional chelator DFO-pPhe-NCS for 89-Zr-immu-
no-PET. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 286−295.
(34) Kadi, N.; Oves-Costales, D.; Barona-Gomez, F.; Challis, G. L. A
new family of ATP-dependent oligomerization-macrocyclization
biocatalysts. Nat. Chem. Biol. 2007, 3, 652−656.
(35) Soe, C. Z.; Codd, R. Unsaturated macrocyclic dihydroxamic acid
siderophores produced by Shewanella putrefaciens using precursor-
directed biosynthesis. ACS Chem. Biol. 2014, 9, 945−956.
(36) Telfer, T. J.; Gotsbacher, M. P.; Soe, C. Z.; Codd, R. Mixing up
the pieces of the desferrioxamine B jigsaw defines the biosynthetic
sequence catalyzed by DesD. ACS Chem. Biol. 2016, 11, 1452−1462.
(37) Richardson-Sanchez, T.; Tieu, W.; Codd, R. Reverse biosyn-
thesis: Generating combinatorial pools of drug leads from enzyme-
mediated fragmentation of natural products. ChemBioChem 2017, 18,
368−373.
(38) Deri, M. A.; Ponnala, S.; Zeglis, B. M.; Pohl, G.; Dannenberg, J.
J.; Lewis, J. S.; Francesconi, L. C. Alternative chelator for 89Zr
radiopharmaceuticals: radiolabeling and evaluation of 3,4,3,-(LI-1,2-
HOPO). J. Med. Chem. 2014, 57, 4849−4860.
(39) Ma, M. T.; Meszaros, L. K.; Paterson, B. M.; Berry, D. J.;
Cooper, M. S.; Ma, Y. M.; Hider, R. C.; Blower, P. J. Tripodal
tris(hydroxypyridinone) ligands for immunoconjugate PET imaging
(58) Soe, C. Z.; Pakchung, A. A. H.; Codd, R. Directing the
biosynthesis of putrebactin or desferrioxamine B in Shewanella
putrefaciens through the upstream inhibition of ornithine decarbox-
ylase. Chem. Biodiversity 2012, 9, 1880−1890.
I
Inorg. Chem. XXXX, XXX, XXX−XXX