3
86
H. Kodama et al.
Table 2 Effect of Additive on Palladium-catalyzed Asymmetric Allylic Amination
LETTER
a
c
b
Isolated yield. Determined by HPLC analysis using a DAICEL CHIRALCEL OD-H column.
BSA = N,O-bis(trimethylsilyl)acetamide
(
(
4) a) Tani, K.; Yamagata, T.; Otsuka, S.; Akutagawa, S.;
amination catalyzed by Pd(0)-Tol-BINAP using 1.5 equiv
BSA (N,O-bis(trimethylsilyl)acetamide) as an additive
proceeded more smoothly to give the aminated products
Kumobayashi, H.; Taketomi, T.; Takaya, H.; Miyashita, A.;
Noyori, R. J. Chem. Soc., Chem. Commun. 1982, 600. b) Tani,
K.; Yamagata, T.; Akutadawa, S.; Kumobayashi, H.;
Taketomi, T.; Takaya, H.; Miyashita, A.; Noyori, R.; Otsuka,
S. J. Am. Chem. Soc. 1984, 106, 5208.
(
(S)-3a and (-)-3c) than no additive (Entries 1 and 3, Ta-
ble 2).
5) a) Ozawa, F.; Kubo, A.; Hayashi, T. J. Am. Chem. Soc. 1991,
In conclusion, the asymmetric allylic amination of rac-
113, 1417. b) Ozawa, F.; Kubo, A.; Hayashi, T. Tetrahedron
1
,3-diphenyl-2-propenyl acetate (1) with potassium
phthalimide (2a) smoothly proceeded in the presence of
.5 mol% Pd (dba) CHCl and 5.0 mol% (S)-Tol-BINAP
Lett. 1992, 33, 1485. c) Hayashi, T.; Uozumi, Y. Pure Appl.
Chem. 1992, 64, 1911. d) Sato, Y.; Watanabe, S.; Shibasaki,
M. Tetrahedron Lett. 1992, 33, 2589.
2
2
3
3
(
(
(
6) Yamaguchi, M.; Shima, T.; Yamagishi, T.; Hida, M.
to give the allylic product (3a) in 75% yield with 99% ee.
Furthermore, the asymmetric allylic amination of rac-1,3-
diphenyl-2-propenyl acetate (1) with sodium p-toluene-
sulfonamide (2c) using BSA proceeded to give 3c in 40%
yield with 91% ee.
Tetrahedron Lett. 1990, 31, 5049.
7) Fuji, K.; Kinoshita, N.; Tanaka, K. Chem. Commun. 1999,
1895.
8) A typical procedure for the palladium-catalyzed asymmetric
allylic alkylation of rac-1,3-diphenyl-2-propenyl acetate (1)
with benzylamine (2a).
A solution of (S)-Tol-BINAP (0.017 g, 0.025 mmol) and
Pd (dba) ·CHCl (0.013 g, 0.013 mmol) in tetrahydrofuran (2
Acknowledgement
2
3
3
mL) was stirred at room temperature for 30 min. This solution
was successively treated with a solution of rac-1,3-diphenyl-
We thank Dr. Takayuki Yamashita for helpful discussions during
the course of this work. This work was partially supported by Do-
shisha University’s Research Promotion Fund and a grant to
RCAST at Doshisha University from the Ministry of Education, Ja-
pan.
2-propenyl acetate (1) (0.13 g, 0.50 mmol) in tetrahydrofuran
(1 mL) and benzylamine (2a) (0.13 g, 1.2 mmol). The reaction
mixture was then stirred for 48 h at 50 °C. The reaction
mixture was quenched with saturated aqueous ammonium
chloride, and then extracted with diethyl ether. The organic
layer was dried over anhydrous sodium sulfate and evaporated
to dryness, and the residue was chromatographed on silica gel
References and Notes
(
1) a) Hayashi, T.; Yamamoto, A; Ito, Y.; Nishikawa, E.; Miura,
H.; Yanagi, K. J. Am. Chem. Soc. 1989, 111, 6301. b) Hayashi,
T.; Kishi, K.; Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1990,
(
ethyl acetate:hexane = 1:4) to give N-((E)-1,3-diphenyl-2-
25
propenyl)benzylamine ((S)-3a). [α]D = +10.9 (c = 1.7,
CHCl ) (Entry 4, Table 1) (lit. [α] = +25 (c = 1.76,
CHCl ) ). The enantiomeric excess was determined by an
25
3
D
31, 1743. c) Yamazaki, A.; Achiwa, K. Tetrahedron:
9
3
Asymmetry 1995, 6, 51. d) Togni, A.; Burckhardt, U.;
Gramlich, V.; Pregosin, P. S.; Salzmann, R. J. Am. Chem. Soc.
HPLC analysis using a DAICEL CHIRALCEL OD-H column
(
eluent, 1:99 2-propanol−hexane; 0.5 mL/min flow rate;
detection, uv 254 nm; retention times, 15.4 min (R): 16.2 min
S)).
1996, 118, 1031. e) Trost, B. M.; Kruger, A. C.; Bunt, R. C.;
Zambrano, J. J. Am. Chem. Soc. 1996, 118, 6520. f) Trost, B.
M.; Vranken, D. L. V. Chem. Rev. 1996, 96, 395. g) von Matt,
P.; Loiseleur, O.; Koch, G.; Pfaltz, A.; Lefeber, C.; Feucht, T.;
Helmchen, G. Tetrahedron: Asymmetry 1994, 5, 573.
2) a) Vyskocil, S.; Smrcina, M.; Hanus, V.; Polasek, M.;
Kocovsky, P. J. Org. Chem. 1998, 63, 7738. b) Ogasawara,
M.; Yoshida, K.; Kamei, H.; Kato, K.; Uozumi, Y.; Hayashi,
T. Tetrahedron: Asymmetry 1998, 9, 1779.
(
In a similar method, N-((E)-1,3-diphenyl-2-
propenyl)phthalimide ((S)-3b) was prepared from rac-1,3-
diphenyl-2-propenyl acetate (1) and potassium phthalimide
(
(
(
2b) as a nitrogen nucleophile. The work-up, and
determination of the enantiomeric excesses and the absolute
configurations were performed using the same method
25
described above. [α] = +17.31 (c = 1.7, CHCl ) (Entry 6,
D
3
3) a) Ohta, T.; Takaya, H.; Kitamura, M.; Nagai, K.; Noyori, R.
J. Org. Chem. 1987, 52, 3174. b) Kawano, H.; Ikariya, T.;
Ishii, Y.; Saburi, M.; Yoshikawa, S.; Uchida, Y.;
26
9
Table 1) (lit. [α]D = -17 (c = 1.7, CHCl ) ). The enantiomeric
3
excess was determined by a DAICEL CHIRALCEL OD-H
column (eluent, 1:99 2-propanol−hexane; 0.5 mL/min flow
rate; detection, uv 254 nm; retention times, 22.3 min (S): 30.8
min (R)). Moreover, N-((E)-1,3-diphenyl-2-propenyl)-p-
toluenesulfonamide ((-)-3c) was prepared from rac-1,3-
diphenyl-2-propenyl acetate (1) and sodium p-toluene-
sulfonamide (2c) as a nitrogen nucleophile.
The work-up, and determination of the enantiomeric excesses
and the absolute configurations were performed using the
same method described above. The enantiomeric excess was
determined by a DAICEL CHIRALCEL OD-H column
Kumobayashi, H. J. Chem. Soc., Perkin Trans. 1989, 1571. c)
Noyori, R.; Ikeda, T.; Ohkuma, T.; Widhalm, M.; Kitamura,
M.; Takaya, H.; Akutagawa, S.; Sayo, N.; Saito, T.; Taketomi,
T.; Kumobayashi, H. J. Am. Chem. Soc. 1989, 111, 9134. d)
Noyori, R.; Ohkuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.;
Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc. 1987,
109, 5856. e) Kitamura, M.; Ohkuma, T.; Takaya, H.; Noyori,
R. Tetrahedron Lett. 1988, 29, 1555.
Synlett 2001, No. 3, 385–387 ISSN 0936-5214 © Thieme Stuttgart · New York