solar cells without thermal annealing. We are currently
investigating the use of additives and co-solvents in an effort
to further increase device efficiency.
This work was supported by the Dutch Polymer Institute
(grant 678). Portions of this research were carried out at the
Stanford Synchrotron Radiation Lightsource, a Directorate
of SLAC National Accelerator Laboratory and an Office of
Science User Facility operated for the U.S. Department of
Energy Office of Science by Stanford University. We thank
Michael F Toney for help with the GIWAXS measurements.
Fig. 3 (a) J-V curves and (b) EQE curves of polymer solar cell based
on different blend ratio of PGeTPTBT : PC71BM.
the transport direction. These values are slightly higher than
those measured for the SiIDTBT bridged polymer containing
n-octyl sidechains in the same device configuration. However
they are significantly lower than analogous IDT-BT polymer,
despite the lack of any obvious crystallinity in IDT-BT. This
surprising result may indicate that transport in PGeTPTBT is
limited by grain boundaries and misaligned domains, and that
optimisation of the coating and annealing conditions may
result in further performance enhancements.
References
1 C. L. Chochos and S. A. Choulis, Prog. Polym. Sci., 2011, 36,
1326–1414; A. Facchetti, Chem. Mater., 2011, 23, 733–758.
2 C. M. Amb, S. Chen, K. R. Graham, J. Subbiah, C. E. Small, F. So
and J. R. Reynolds, J. Am. Chem. Soc., 2011, 133, 10062–10065.
3 R. S. Ashraf, Z. Y. Chen, D. S. Leem, H. Bronstein, W. M. Zhang,
B. Schroeder, Y. Geerts, J. Smith, S. Watkins, T. D. Anthopoulos,
H. Sirringhaus, J. C. de Mello, M. Heeney and I. McCulloch,
Chem. Mater., 2011, 23, 768–770.
The photovoltaic properties were investigated in solar cells with
a device structure of ITO/PEDOT:PSS/PGeTPTBT:PC71BM/
Ca/Al. The active layers were spin-coated from dichlorobenzene
(DCB) with different blend ratios of PGeTPTBT:PC71BM from
1 : 1 to 1 : 4 (w/w). In common with other ladder type donor
polymers, we found the optimal polymer:fullerene ratio was
around 1 : 4, with significant differences in the device performance
of the 1 : 1 blend and the 1 : 4 blend. The I–V curve of typical
devices under illumination of AM1.5 are shown in Fig. 3, with
1 : 1 devices having a PCE of 1.1% with 4.5 mA cmꢀ2 of
photocurrent density (Jsc), 0.80 V of Voc and 0.3 of FF, whereas
the 1 : 4 devices reached a PCE of 5.02%, with 10.1 mA cmꢀ2 of
photocurrent density (Jsc), 0.86 V of Voc and 0.58 of FF. The
promising performance is mainly a factor of the high voltage,
which is significantly higher than that observed in IDTBT blends
(0.79 V), but slightly lower than that of SiIDTBT (0.88 eV).
Fig. 3b shows the external quantum efficiency (EQE) spectra
of the best devices of each blend ratio as a function of
wavelength. These devices exhibited broad EQE responses
extending from 300 to 750 nm, which maps well with the
polymer absorption, and had a maximum intensity ranging
between 400 and 500 nm. We attribute their higher EQE
responses in the visible region to the corresponding higher
absorbance of the blend, resulting from both the intrinsic
absorption of the polymer and the presence of a high content
of PC71BM, which also absorbs significantly at 400–500 nm.
In conclusion we have prepared the first example of a
germaindacenodithiophene monomer and report its polymerisation
with benzothiadiazole to afford a low band gap polymer.
Unlike the analogous silaindacenodithiophene the germanium
bridged monomer is stable under basic conditions facilitating
polymerisation by Suzuki polycondensation. The resulting
polymer forms semicrystalline thin films, despite the presence
of four bulky ethylhexyl groups and is found to exhibit initial
power conversion efficiencies of 5.02% in bulk heterojunction
4 G. C. Bazan, J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses
and A. J. Heeger, Nat. Mater., 2007, 6, 497–500; A. J. Heeger,
J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim,
K. Lee and G. C. Bazan, J. Am. Chem. Soc., 2008, 130, 3619–3623;
G. Lu, H. Usta, C. Risko, L. Wang, A. Facchetti, M. A. Ratner
and T. J. Marks, J. Am. Chem. Soc., 2008, 130, 7670–7685;
D. Muhlbacher, M. Scharber, M. Morana, Z. G. Zhu,
D. Waller, R. Gaudiana and C. Brabec, Adv. Mater., 2006, 18,
2884–2889; H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen,
A. Mavrinskiy, D. Y. Yoon, R. Graf, W. Pisula, H. W. Spiess
and K. Mullen, J. Am. Chem. Soc., 2011, 133, 2605–2612; Y. Yang,
¨
J. H. Hou, H. Y. Chen, S. Q. Zhang and G. Li, J. Am. Chem. Soc.,
2008, 130, 16144–16145.
5 Z. Fei, J. S. Kim, J. Smith, E. B. Domingo, T. D. Anthopoulos,
N. Stingelin, S. E. Watkins, J.-S. Kim and M. Heeney, J. Mater.
Chem., 2011, 21, 16257–16263.
6 J.-Y. Wang, S. K. Hau, H.-L. Yip, J. A. Davies, K.-S. Chen,
Y. Zhang, Y. Sun and A. K. Y. Jen, Chem. Mater., 2011, 23,
765–767.
7 J. Ohshita, Macromol. Chem. Phys., 2009, 210, 1360–1370.
8 H. Y. Chen, J. H. Hou, A. E. Hayden, H. Yang, K. N. Houk and
Y. Yang, Adv. Mater., 2010, 22, 371–375; M. C. Scharber,
M. Koppe, J. Gao, F. Cordella, M. A. Loi, P. Denk,
M. Morana, H.-J. Egelhaaf, K. Forberich, G. Dennler,
R. Gaudiana, D. Waller, Z. Zhu, X. Shi and C. J. Brabec, Adv.
Mater., 2010, 22, 367–370.
9 M. Morana, H. Azimi, G. Dennler, H.-J. Egelhaaf, M. Scharber,
K. Forberich, J. Hauch, R. Gaudiana, D. Waller, Z. Zhu,
K. Hingerl, S. S. van Bavel, J. Loos and C. J. Brabec, Adv. Funct.
Mater., 2010, 20, 1180–1188.
¨
10 D. Gendron, P.-O. Morin, P. Berrouard, N. Allard, B. R. Aıch,
C. N. Garon, Y. Tao and M. Leclerc, Macromolecules, 2011, 44,
7188–7193; J. Ohshita, Y.-M. Hwang, T. Mizumo, H. Yoshida,
Y. Ooyama, Y. Harima and Y. Kunugi, Organometallics, 2011, 30,
3233–3236.
11 H. Bronstein, D. S. Leem, R. Hamilton, P. Woebkenberg, S. King,
W. M. Zhang, R. S. Ashraf, M. Heeney, T. D. Anthopoulos, J. de
Mello and I. McCulloch, Macromolecules, 2011, 44, 6649–6652;
W. Zhang, J. Smith, S. E. Watkins, R. Geysel, M. McGehee,
A. Salleo, J. Kirkpatrik, J. S. Ashraf, T. Anthopoulos, M. Heeney
and I. McCulloch, J. Am. Chem. Soc., 2010, 132, 11437–11439.
12 J. L. Baker, S. Mannsfeld, L. H. Jimison, S. Volkman, S. Yin,
V. Subramanian, A. Salleo, A. P. Alivisatos and M. F Toney,
Langmuir, 2010, 26, 9146–9151.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 2955–2957 2957