Paper
RSC Advances
2 (a) B. K. Saha, A. Nangia and J.-F. Nicoud, Cryst. Growth
Des., 2006, 6, 1278; (b) G. R. Desiraju, Crystal Engineering:
The Design of Organic Solids, Elsevier, Amsterdam, 1989; (c)
B. B. Ivanova and M. Spiteller, J. Phys. Chem. A, 2010, 114,
5099; (d) N. J. Long, Angew. Chem., Int. Ed. Engl., 1995, 34,
21; (e) J. Zyss and J. F. Nicoud, Curr. Opin. Solid State Mater.
Sci., 1996, 1, 533; (f) M. C. Etter and K. S. Huang, Chem.
Mater., 1992, 4, 824; (g) D. Y. Curtin and C. Paul, Chem.
Rev., 1981, 81, 525; (h) S. K. Maity, R. Kumar, K. S. Deepak,
B. Pal and D. Haldar, J. Mater. Chem., 2012, 22, 22198; (i)
N. Rani, N. Vijayan, B. Riscob, S. K. Jat, A. Krishna, S. Das,
G. Bhagavannarayana, B. Rathi and A. M. Wahab,
CrystEngComm, 2013, 15, 2127.
46.4, 46.3, 36.7, 26.3, 25.0, 23.2, 23.1, 21.2 ppm; HRMS
calculated for C18H23N2O3 (M
315.1508.
+
H)+: 315.1703 found:
+
2-(1-Oxo-3-phenyl-1-(pyrrolidin-1-yl)propan-2-yl)isoindoline-
1,3-dione (2). Yield = 83%; Melting point 145 uC (DSC); [a]D18:2
2136.9; FTIR (KBr) nmax (cm21) 3062, 3029, 2936, 2867, 1718,
1646, 1467, 1432, 1381, 1331, 1167, 1099, 723, 497; 1H NMR
(400 MHz, CDCl3): d 7.76 (2H, m), 7.67 (2H, m), 7.18 (5H, m),
5.13 (1H, dd, J = 9.56, 6.6 Hz), 3.58 (4H, m), 1.82 (4H, m) ppm;
13C NMR (100 MHz, CDCl3): d 167.6, 166.6, 137.1, 134.0, 131.3,
129.1, 128.4, 126.6, 123.3, 54.3, 46.5, 46.0, 34.7, 26.2, 23.7 ppm;
HRMS calculated for C21H21N2O3 (M + H)+: 349.1547 found:
+
349.1266.
3 (a) P. A. Maggard, C. L. Stern and K. R. Poeppelmeier, J. Am.
Chem. Soc., 2001, 123, 7742; (b) R. G. Xiong, X. Xue,
H. Zhao, X.-Z. You, B. F. Abrahams and Z. Xue, Angew.
Chem., Int. Ed., 2002, 41, 3800; (c) M. Ohkita, T. Suzuki,
K. Nakatani and T. Tsuji, Chem. Commun., 2001, 16, 1454;
(d) P. Gangopadhyay and T. Radhakrishnan, Angew. Chem.,
Int. Ed., 2001, 40, 2451.
4 C. Wang, T. Zhang and W. Lin, Chem. Rev., 2012, 112, 1084
and references cited therein.
5 (a) V. A. Russel, M. C. Etter and M. D. Ward, Chem. Mater.,
1994, 6, 1206; (b) T. P. Radhakrishnan, Acc. Chem. Res.,
2008, 41, 367.
2-(1-Oxo-3-phenyl-1-(piperidin-1-yl)propan-2-yl)isoindoline-
1,3-dione (3). Yield = 80%; Melting point 150 uC (DSC); [a]D19:4
2174.5; FTIR (KBr) nmax (cm21) 3030, 2934, 2922, 2858, 1718,
1645, 1453, 1440, 1381, 1080, 717, 528, 489; 1H NMR (400 MHz,
CDCl3): d 7.75 (2H, m), 7.67 (2H, m), 7.18 (5H, m), 5.30 (1H,
dd, J = 10.24, 5.88 Hz), 3.7 (1H, dd, J = 14.3, 11.0 Hz), 3.60 (2H,
m), 3.43 (1H, dd, J = 14.64, 5.16 Hz), 3.32 (m, 2H), 1.57 (2H, m),
1.53 (4H, m) ppm; 13C NMR (100 MHz, CDCl3): d 167.7, 166.5,
137.2, 134.0, 131.4, 129.0, 128.4, 126.7, 123.3, 52.7, 46.6, 43.6,
+
35.0, 26.2, 25.4, 24.3 ppm; HRMS calculated for C22H23N2O3
(M + H)+: 363.1703 found: 363.1400.
6 (a) D. N. Nikogosian, in Nonlinear optical crystals: a
complete survey, Springer-Science, New York, 2005; (b) D.
R. Kanis, M. A. Ratner and T. J. Marks, Chem. Rev., 1994,
94, 195; (c) K. Jain and G. W. Pratt, Appl. Phys. Lett., 1976,
28, 719.
7 (a) Y. R. Shen, in The Principles of Nonlinear Optics, Wiley,
New York, 1984; (b) R. W. Boyd, in Nonlinear Optics,
Academic Press, New York, 1992; (c) G. Zhang, S.-Y. Yao, D.-
W. Guo and Y.-Q. Tian, Cryst. Growth Des., 2010, 10, 2355.
8 T.-F. Tan, J. Han, M.-L. Pang, H.-B. Song, Y.-X. Ma and J.-
B. Meng, Cryst. Growth Des., 2006, 6, 1186.
Acknowledgements
BR is grateful to the Department of Science and Technology,
Ministry of Science and Technology, India for financial
support (SR/FT/CS-108/2010).
Notes and references
1 (a) J. Zyss and D. S. Chemla, in Nonlinear Optical properties
of Organic Molecules and Crystals, Academic Press, New
York, 1987, vol. 1; (b) H. Zhao, Y.-H. Li, X.-S. Wang, Z.-
R. Qu, L.-Z. Wang, R.-G. Xiong, B. F. Abrahams and Z.
L. Xue, Chem.–Eur. J., 2004, 10, 2386; (c) K. T. Holman, A.
M. Pivovar and M. D. Ward, Science, 2001, 294, 1907; (d) M.
D. Hollingsworth, Science, 2002, 295, 2410; (e) V.
R. Thalladi, S. Brasselet, H. C. Weiss, D. Blaser, A.
K. Katz, H. L. Carrell, R. Boese, J. Zyss, A. Nangia and G.
R. Desiraju, J. Am. Chem. Soc., 1998, 120, 2563; (f) D. Braga,
F. Grepioni and G. R. Desiraju, Chem. Rev., 1998, 98, 1375;
(g) J. Zyss, S. Brasselet, V. R. Thalladi and G. R. Desiraju, J.
Chem. Phys., 1998, 109, 658; (h) V. R. Thalladi, R. Boese,
S. Brasselet, I. Ledoux, J. Zyss, R. K. R. Jetti and G.
R. Desiraju, Chem. Commun., 1999, 17, 1639.
9 M. J. Prakash and T. P. Radhakrishnan, Cryst. Growth Des.,
2005, 5, 1831.
10 (a) N. Barooah, R. J. Sarma and J. B. Baruah, Cryst. Growth
Des., 2003, 3, 639; (b) A. Schwarzer and E. Weber, Cryst.
Growth Des., 2008, 8, 2862.
11 D. A. Kleinman, Phys. Rev., 1962, 126, 1977.
12 Y. X. Sun, Q. L. Hao, W.-X. Wei, Z.-X. Yu, L.-D. Lu, X. Wang
and Y.-S. Wang, J. Mol. Struct.: Theochem., 2009, 904, 74.
13 H. Tanak, J. Mol. Struct.: Theochem, 2010, 950, 5.
14 B. S. Furniss, A. J. Hannafold, P. W. G. Smith and A.
R. Tatchell, Vogel’s Textbook of Practical Organic
Chemistry, 5th edn, Longman Scientific and Technical,
London, 1989.
14756 | RSC Adv., 2013, 3, 14750–14756
This journal is ß The Royal Society of Chemistry 2013