1254
Can. J. Chem. Vol. 88, 2010
½6ꢂ
ðMeHNÞðMeN¼ÞCSO3H þ HOCl þ H2O !
uk/conts/retrieving.html (or from the Cambridge Crystallo-
graphic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; fax +44 1223 336033; or deposit@ccdc.cam.ac.uk).
ðMeHNÞ2C¼O þ SO42ꢃ þ Clꢃ þ 3Hþ
Absorbance traces in Fig. 5b were monitored at 292 nm,
and show that the reaction essentially goes to completion
and is over within 20 s. Any rate constant derived from
these data is only relevant for this pH condition and for this
buffer strength and concentration. The final observed rate of
reaction is derived from a complex interaction of the buffer
anions with DMAIMSOA and their effect in facilitating the
reaction in eq. [5]. The positively charged carbon center is
susceptible to nucleophilic attack with the result that the C–
S bond is weakened, facilitating its cleavage. Figures 5c and
5d show that the incubation of solutions is not an important
factor for reactions run in basic environments. Freshly pre-
pared solutions gave nearly the same reaction times as those
incubated for a week. Examination of the initial absorbance
readings for the incubated solutions, however, show that the
initial DMAIMSOA absorbances are depressed from the val-
ues recorded for unincubated solutions. The data, taken at
215 nm in Figs. 5c and 5d, are more difficult to explain if
indeed the reaction in eq. [5] is irreversible. Thus, in basic
environments, some equilibrium is attained, although some
irreversible entropically favored decomposition also still
Acknowledgements
This work was supported by Research Grant No. CHE
0614924 from the National Science Foundation.
References
(1) Fox, R. B. J. Clin. Invest. 1984, 74 (4), 1456. doi:10.1172/
JCI111558. PMID:6090504.
(2) Curtis, W. E.; Muldrow, M. E.; Parker, N. B.; Barkley, R.;
Linas, S. L.; Repine, J. E. Proc. Natl. Acad. Sci. U.S.A.
1988, 85 (10), 3422. doi:10.1073/pnas.85.10.3422. PMID:
3130627.
(3) Parker, N. B.; Berger, E. M.; Curtis, W. E.; Muldrow, M. E.;
Linas, S. L.; Repine, J. E. J. Free Radic. Biol. Med. 1985, 1
(5–6), 415. doi:10.1016/0748-5514(85)90155-2. PMID:
3018065.
(4) Bruck, R.; Aeed, H.; Shirin, H.; Matas, Z.; Zaidel, L.; Avni,
Y.; Halpern, Z. J. Hepatol. 1999, 31 (1), 27. doi:10.1016/
S0168-8278(99)80160-3. PMID:10424280.
(5) Huxtable, R. J., Lafranconi, M. W., Eds. Sulfur and the Me-
tabolism of Xenobiotics. In Biochemistry of Sulfur; Plenum
Publishing: New York, 1986.
–
proceeds. The reaction of HOCl with HSO3 is essentially
(6) Sausen, P. J.; Elfarra, A. A.; Cooley, A. J. J. Pharmacol.
Exp. Ther. 1992, 260 (1), 393. PMID:1731048.
(7) Park, S. B.; Howald, W. N.; Cashman, J. R. Chem. Res. Tox-
icol. 1994, 7 (2), 191. doi:10.1021/tx00038a012. PMID:
8199308.
(8) Del Corso, A.; Cappiello, M.; Mura, U. Int. J. Biochem.
1994, 26 (6), 745. doi:10.1016/0020-711X(94)90103-1.
PMID:8063003.
(9) Organisciak, D. T.; Darrow, R. M.; Jiang, Y. I.; Marak, G.
E.; Blanks, J. C. Invest. Ophthalmol. Vis. Sci. 1992, 33 (5),
1599. PMID:1559759.
(10) Chigwada, T. R.; Chikwana, E.; Ruwona, T.; Olagunju, O.;
Simoyi, R. H. J. Phys. Chem. A 2007, 111 (45), 11552.
doi:10.1021/jp074897z. PMID:17944446.
diffusion controlled, and would not show the type of ki-
netics observed in Figs. 5b–5d.
Conclusions
Owing to the inertness of aminoiminomethanesulfonic
acid (AIMSOA) and DMAIMSOA, previous assertions from
our research work had suggested that in these types of com-
pounds that contain the thiouredo group, oxidation can pro-
ceed directly from the sulfinic acid to sulfate, bypassing the
sulfonic acid.10,31,33 Evidence for this involves the direct ob-
servation of an untrapped sulfoxyl anion radical in aerobic
decompositions of aminosulfinic acids.34 The inordinately
long C–S bond in aminoiminomethanesulfonic acid
(AIMSA) and DMAIMSA is easily cleaved by thermal acti-
vation or by the presence of nucleophiles. In fact, high yield
guanidine formation is effected by the reaction of aminosul-
finic acids with amines.35–37 The nucleophilic amine center
attacks the positive carbon center, culminating in the cleav-
age of the C–S bond and the formation of a C=N double
bond.
The present synthesis and characterization, however, does
not preclude the formation of the sulfonic acid as one of the
stable intermediates in the oxidation of a thiouredo group in
the basic environment and in the presence of basic anions or
nucleophiles. Thus, in the physiological environment, meta-
bolic activation of thiocarbamides, where S-oxygenation oc-
curs at pH 7.4, the sulfonic acid is a viable intermediate,
which can later be oxidized further to give sulfate and urea-
type organic residue.
(11) Chigwada, T. R.; Chikwana, E.; Simoyi, R. H. J. Phys.
Chem.
A 2005, 109 (6), 1081. doi:10.1021/jp0458654.
PMID:16833417.
(12) Ziegler, D. M. Annu. Rev. Pharmacol. Toxicol. 1993, 33 (1),
179. doi:10.1146/annurev.pa.33.040193.001143. PMID:
8494339.
(13) Decker, C. J.; Doerge, D. R.; Cashman, J. R. Chem. Res.
Toxicol. 1992, 5 (5), 726. doi:10.1021/tx00029a021. PMID:
1446015.
(14) Beehler, C. J.; Ely, M. E.; Rutledge, K. S.; Simchuk, M. L.;
Reiss, O. K.; Shanley, P. F.; Repine, J. E. J. Lab. Clin. Med.
1994, 123 (1), 73. PMID:8288964.
(15) Bishop, M. J.; Chi, E. Y.; Su, M.; Cheney, F. W. J. Appl.
Physiol. 1988, 65 (5), 2051. PMID:2850292.
(16) Ojo, J. F.; Petersen, J. L.; Otoikhian, A.; Simoyi, R. H. Can.
J. Chem. 2006, 84 (5), 825. doi:10.1139/V06-023.
(17) Bruice, T. C.; Sayigh, A. B. J. Am. Chem. Soc. 1959, 81
(13), 3416. doi:10.1021/ja01522a066.
(18) Bruice, T. C.; Markiw, R. T. J. Am. Chem. Soc. 1957, 79
(12), 3150. doi:10.1021/ja01569a043.
(19) Ishii, A.; Komiya, K.; Nakayama, J. J. Am. Chem. Soc. 1996,
118 (50), 12836. doi:10.1021/ja962995k.
(20) Chinake, C. R.; Simoyi, R. H. J. Phys. Chem. 1993, 97 (44),
11569. doi:10.1021/j100146a035.
Supplementary data
Supplementary data for this article are available on the
journal Web site (canjchem.nrc.ca). CCDC 778932 contains
the X-ray data in CIF format for this manuscript. These data
Published by NRC Research Press