2
8
RANJAN ET AL.
rhombic phase OI for 0.094x(0.36, (iii) orthorhombic
phase OII for 0.364x40.40, (iv) orthorhombic phase
OIII for 0.40(x40.55, and (v) orthorhombic phase OIV
for x'0.55. The structure of SCT in the composition range
0
.064x(0.09 may be either tetragonal or orthorhombic
but it is de"nitely noncubic.
Rietveld analysis of neutron powder di!raction data is of
little help in making a choice between the two plausible
space groups (Pbnm and Cmcm) in the composition range
0
.40(x40.55. The electron microdi!raction and conver-
gent beam electron di!raction studies have revealed that the
correct space group of SCT in this composition range is
Pbnm (tilt system a\a\c>) and not Cmcm (tilt system
aꢆb>c\). For the composition range 0.364x40.40, the
correct space group is Pbcm.
FIG. 8. Variation of equivalent elementary perovskite cell parameters
with Caꢃ> concentration (x).
ACKNOWLEDGMENT
In the composition range 0.094x40.40, the 004 peak
occurs on the lower angle side of 400/040 position, indicat-
ing c 'a . For x'0.40, this situation is reversed since the
Partial support from Inter University Consortium for the Department of
Atomic Energy Facilities is gratefully acknowledge by the authors from
BHU.
ꢀ
ꢀ
0
04 peak now occurs on the higher angle side of the 400/040
position. Thus, for x40.40, c 'a whereas for x'0.40,
ꢀ
ꢀ
REFERENCES
c (a . As per the work of Ball et al. (21), the latter trend
ꢀ
ꢀ
may continue up to x+0.55. For x'0.55, the elementary
perovskite cell is monoclinically distorted in the sense dis-
cussed earlier.
1
2
3
. G. Shirane and Y. Yamada, Phys. Rev. 177, 858 (1969).
. A. D. Bruce and R. A. Cowley Adv. Phys. 29, 219 (1980).
. K. A. Muller, W. Berlinger, and E. Tosatti, Z. Phys. B: Condens. Matter
On the basis of the equivalent elementary perovskite cell
parameters (a , b , c ) and their relationship with the or-
8
4, 277 (1991).
4. K. A. Muller and H. Burkard, Phys. Rev. B 19, 3593 (1979).
ꢀ
ꢀ ꢀ
5
6
7
8
. H. Granicher and O. Jakits, Nuovo Cimento 9 (Suppl), 480 (1954).
. T. Mitsui and W. B. Westphal, Phys. Rev. 124, 1354 (1961).
. J. G. Bednorz and K. A. Muller, Phys. Rev. ¸ett. 52, 2289 (1984).
. J. Dec, W. Kleemann, U. Bianchi, and J. G. Bednorz, Europhys. ¸ett.
thorhombic unit cell parameters (A , B , C ), four di!erent
ꢆ
ꢆ
ꢆ
types of orthorhombic phases need to be distinguished in
the SCT system: (i) Orthorhombic (OI) for 0.094x(0.36:
In this composition range, the equivalent elementary perov-
skite cell is pseudotetragonal with c 'a (+b ),
2
9(1), 31 (1995).
9. W. Kleeman, U. Bianchi, A. Burgel, M. Prasse, and J. Dec, Phase
rans. 55, 57 (1995).
0. W. Kleeman, A. Albertini, Chamberlin, and J. G. Bednorz, Europhys.
ett. 37(2), 145 (1997).
ꢀ
ꢀ
ꢀ
¹
A +B +(2a , C +2c and the space group is Ibmm. (ii)
ꢆ
ꢆ
ꢀ
ꢆ
ꢀ
1
Orthorhombic (OII) for 0.364x40.40: In this composi-
tion range, the equivalent elementary perovskite cell is
pseudotetragonal with c 'a (+b ), A +B +(2a ,
¸
1
1
1. W. Kleeman, J. Dec, and B. West Wanski, Phys. Rev. B 58, 8985 (1998).
2. R. Ranjan, D. Pandey, V. Siruguri, P. S. R. Krishna, and S. K.
Paranjpe, J. Phys.: Condens. Matter 11, 2233 (1999).
ꢀ
ꢀ
ꢀ
ꢆ
ꢆ
ꢀ
C +4c and its space group is Pbcm. (iii) Orthorhombic
ꢆ
ꢀ
1
1
1
1
1
3. R. Ranjan and D. Pandey, J. Phys.: Condens. Matter 11, 2247 (1999).
4. R. Ranjan, D. Pandey, and N. P. Lalla, Phys. Rev. ¸ett. 84, 3726 (2000).
5. S. K. Mishra, R. Ranjan, and D. Pandey, to be published.
6. R. A. Redfern, J. Phys.: Condens. Matter 8, 8267 (1996).
7. B. J. Kennedy, C. J. Howard, and B. C. Chakoumakos, J. Phys.:
Condens. Matter 11, 1479 (1999).
8. H. F. Kay and P. C. Bailey, Acta Crystallogr. B 10, 219 (1957).
9. M. McQuarrie, J. Am. Ceram. Soc. 38, 444 (1955).
20. M. Ceh, D. Kolar, and L. Golic, J. Solid State Chem. 68, 68 (1987).
(
OIII) for 0.40(x40.55: In this composition range, the
equivalent elementary perovskite cell is pseudotetragonal
with c (a (+b ), A +B +(2a , C +2c and the
ꢀ
ꢀ
ꢀ
ꢆ
ꢆ
ꢀ
ꢆ
ꢀ
space group is Pbnm (,Pcmn). (iv) Orthorhombic (OIV) for
0
.55(x41.00: In this composition range, according to
1
1
Ball et al. (21), the equivalent elementary perovskite cell is
monoclinically distorted with a "b Oc with c slightly
ꢀ
ꢀ
ꢀ
ꢀ
greater than 903 while the space group remains Pbnm.
2
1. C. J. Ball, B. D. Begg, D. J Cookson, G. J. Thorogood, and E. R. Vance,
J. Solid State Chem. 139, 238 (1998).
2
2
2
2
2. R. Ranjan and D. Pandey, J. Phys.: Condens Matter 13, 4251 (2001).
3. A. M. Glazer, Acta. Crystallogr. B 28, 3384 (1972).
4. A. M. Glazer, Acta. Crystallogr. A 31, 756 (1975).
5. J. P. Morniroli and J. W. Steeds, ;ltramicroscopy 45, 219 (1992).
6
. CONCLUSION
Five di!erent phases appear at room temperature as
a function of Caꢃ> content: (i) cubic for x(0.06, (ii) ortho- 26. &&International Tables for Crystallography.'' Kluwer, Dordrecht, 1992.