Journal of the American Chemical Society
Page 8 of 10
1
2
3
4
5
6
7
(9)
(a) Liu, L.; Frohn, M.; Xi, N.; Dominguez, C.; Hungate, R.; Reider, P. J. A Soluble Base for the Copper-Catalyzed
Imidazole N-Arylations with Aryl Halides. J. Org. Chem. 2005, 70, 10135−10138. (b) Sung, S.; Sale, D.; Braddock,
D. C.; Armstrong, A. Brennan, C.; Davies, R. P. Mechanstic Studies on the Copper-Catalyzed N-Arylation of
Alkylamines Promoted by Soluble Ionic Bases. ACS Catal. 2016, 6, 3965-3974. (c) Lo, Q. A.; Sale, D.; Braddock, D.
C.; Davies, R. P. Mechanistic and Performance Studies on the Ligand-Promoted Ullmann Amination Reaction. ACS
Catal. 2018, 8, 101−109.
8
9
(10)
Morgenthaler, M.; Schweizer, E.; Hoffmann-Röder, A.; Benini, F.; Martin, R. E.; Jaeschke, G.; Wagner, B.; Fischer,
H.; Bendels, S.; Zimmerli, D.; Schneider, J.; Diederich, F.; Kansy, F.; Müller, K. Predicting and Tuning
Physicochemical Properties in Lead Optimization: Amine Basicities. ChemMedChem 2007, 2, 1100−1115.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(11)
(12)
Roose, P.; Eller, K.; Henkes, E.; Rossbacher, Höke, H. Ullmann’s Encyclopedia of Industrial Chemistry. In Amines,
Aliphatic, Wiley, Hoboken, 2015.
(a) Dennis, J. M.; White, N. A.; Liu, R. Y.; Buchwald, S. L. Breaking the Base Barrier: An Electron-Deficient
Palladium Catalyst Enables the Use of a Common Soluble Base in C−N Coupling. J. Am. Chem. Soc. 2018, 140,
4721−4725. (b) For additional applications of this catalyst system, see: Engl, P. S.; Häring, A. P.; Berger, F.; Berger,
G.; Pérez-Bitrián, A.; Ritter, T. C−N Cross-Couplings for Site-Selective Late-Stage Diversification via Aryl
Sulfonium Salts. J. Am. Chem. Soc. 2019, 141, 13346−13351.
(13)
(a) Dennis, J. M.; White, N. A.; Liu, R. Y.; Buchwald, S. L. Pd-Catalyzed C−N Coupling Reactions Facilitated by
Organic Bases: Mechanistic Investigation Leads to Enhanced Reactivity in the Arylation of Weakly Binding Amines.
ACS Catal. 2019, 9, 3822−3830. For computational mechanistic studies, see: (b) Kim, S.-T.; Pudasaini, B.; Baik, M.-
H. Mechanism of Palladium-Catalyzed C–N Coupling with 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) as a Base.
ACS Catal. 2019, 9, 6851−6856. (c) Sunesson, Y.; Limé, E.; Nilsson Lill, S. O.; Meadows, R. E.; Norrby, P.-O. Role
of the Base in Buchwald−Hartwig Amination. J. Org. Chem. 2014, 79, 11961−11969.
(14)
(15)
Baumgartner, L. M.; Dennis, J. M.; White, N. A.; Buchwald, S. L.; Jensen, K. F. Use of a Droplet Platform To
Optimize Pd-Catalyzed C–N Coupling Reactions Promoted by Organic Bases. Org. Process Res. Dev. 2019, 23,
1594−1601.
(a) Christau, H. J.; Desmurs, J. R. Arylation of Hard Heteroatomic Nucleophiles Using Bromoarenes Substrates and
Cu, Ni, Pd-Catalysts. Ind. Chem. Libr. 1995, 7, 240. For the first general method, see: (b) Wolfe, J. P.; Buchwald, S.
L. Nickel-Catalyzed Amination of Aryl Chlorides. J. Am. Chem. Soc. 1997, 119, 6054−6058. (b) For a detailed history
of this topic, see: Marín, M.; Rama, R. J.; Nicasio, M. C. Ni-Catalyzed Amination Reactions: An Overview. Chem.
Rec. 2016, 16, 1819−1832.
(16)
For recent examples, see: (a) Lavoie, C. M.; Tassone, J. P.; Ferguson, M. J.; Zhou, Y.; Johnson, E. R.; Stradiotto, M.
Probing the Influence of PAd-DalPhos Ancillary Ligand Structure on Nickel-Catalyzed Ammonia Cross-Coupling.
Organometallics, 2018, 37, 4015−4023. (b) McGuire, R. T.; Paffile, J. F. J.; Zhou, Y.; Stradiotto, M. Nickel-Catalyzed
C-N Cross-Coupling of Ammonia, (Hetero)anilines, and Indoles with Activated (Hetero)aryl Chlorides Enabled by
Ligand Design. ACS Catal., 2019, 9, 9292−9297. For a thorough review on this topic in regard to bisphosphines, see:
(c) Lavoie, C. M.; Stradiotto, M. Bisphosphines: A Prominent Ancillary Ligand Class for Application in Nickel-
Catalyzed C–N Cross-Coupling. ACS Catal. 2018, 8, 7228−7250.
(17)
(a) Corcoran, E. B.; Pirnot, M. T.; Lin, S.; Dreher, S. D.; DiRocco, D. A.; Davies, I. W.; Buchwald, S. L.; MacMillan,
D. W. C. Aryl Amination Using Ligand-Free Ni(II) Salts and Photoredox Catalysis. Science 2016, 353, 279−283. (b)
Kudisch, M.; Lim, C.-H.; Thordarson, P.; Miyake, G. M. Energy Transfer to Ni-Amine Complexes in Dual Catalytic,
Light-Driven C–N Cross-Coupling reactions. J. Am. Chem. Soc. 2019, 141, 19479–19486. (c) Lim, C.-H.; Kudisch,
M.; Liu, B. Miyake, G. M. C−N Cross-Coupling via Photoexcitation of Nickel-Amine Complexes. J. Am. Chem. Soc.
2018, 140, 7667–7673. (d) Park, B. Y.; Pirnot, M. T.; Buchwald, S. L. Visible Light-Mediated (Hetero)aryl Amination
Using Ni(II) Salts and Photoredox Catalysis in Flow: A Synthesis of Tetracaine. J. Org. Chem. 2020,
10.1021/acs.joc.9b03107.
(18)
(a) Li, C.; Kawamata, Y.; Nakamura, H.; Vantourout, J. C.; Liu, Z.; Hou, Q.; Bao, D.; Starr, J. T.; Chen, J.; Yan, M.;
Baran, P. S. Electrochemically Enabled, Nickel-Catalyzed Amination. Angew. Chem. Int. Ed. 2017, 56, 13088–13093.
(b) Kawamata, Y.; Vantourout, J. C.; Hickey, D. P.; Bai, P.; Chen, L.; Hou, Q.; Qiao, W.; Barman, K.; Edwards, M.
A.; Garrido-Castro, A. F.; deGruyter, J. N.; Nakamura, H.; Knouse, K.; Qin, C.; Clay, K. J.; Bao, D.; Li, C.; Starr, J.
T.; Garcia-Irizarry, C.; Sach, N.; White, H. S.; Neurock, M.; Minteer, S. D.; Baran, P. S. Electrochemically Driven,
Ni-Catalyzed Aryl Amination: Scope, Mechanism, and Applications. J. Am. Chem. Soc. 2019, 141, 6392−6402.
ACS Paragon Plus Environment
8