C O M M U N I C A T I O N S
co-2), we can conclude that incorporation of a small amount of
monomer 1 into P3HT does not significantly effect its electronic
properties. Additionally, since we have observed identical device
performance and stability for poly(1-co-2) and the commercially
available material, which has a significantly higher Mn,6 it is unlikely
that molecular weight plays a major role in forming a stable BHJ.
However, because poly(1-co-2) and the commercial material have
similar amounts of disorder (in the form of HH linkages), greater
than the control RR-P3HT, we conclude this is an important aspect
in forming a thermally stable BHJ with PCBM. Thus the 5%
efficiency1 obtained through rigorous optimization of devices
prepared using commercial P3HT may be due to the fortuitous lower
RR of that material,6 which eliminates the concern of phase
segregation. Obtaining a stable interpenetrating network of electron
donor and electron acceptor is important for organic photovoltaics.
Here we have seen that, while maximizing regioregularity in P3HT
may provide the best electronic properties in the pristine material,
the most stable photovoltaic performance is obtained with a
polythiophene with a tuned regioregularity to control the BHJ
morphology.
Acknowledgment. Financial support of this work by the
Department of Energy (DE-AC03-76SF00098) is gratefully ac-
knowledged. B.C.T. acknowledges funding from an ACS PRF
postdoctoral AEF. We thank Prof. A. P. Alivisatos and his group
for fabrication facilities and helpful discussion of this work.
Figure 1. Transmission electron micrographs of annealed BHJ thin films
containing 1:1 by weight RR-P3HT:PCBM (a) and poly(1-co-2):PCBM
(b). An interpenetrating network of polymer and fullerene is observed with
poly(1-co-2) (b), while no obvious features are seen in the polymer region
of the control case (a). The insets show a wider view of the films and the
micron-scale phase segregation of PCBM (dark region) from the RR-P3HT
in the control case. No micron-scale features are observed when poly(1-
co-2) is used in the BHJ. The film edge is shown to confirm focus in the
inset of (b).
Supporting Information Available: Complete synthetic proce-
dures, characterization, and device fabrication methods. This material
References
(1) Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J. AdV. Funct.
Mater. 2005, 15, 1617-1622.
(2) (a) Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.;
Yang, Y. Nat. Mater. 2005, 4, 864-868. (b) Reyes-Reyes, M.; Kim, K.;
Carroll, D. L. Appl. Phys. Lett. 2005, 87, 083506.
(3) (a) Markov, D. E.; Amsterdam, E.; Blom, P. W. M.; Sieval, A. B.;
Hummelen, J. C. J. Phys. Chem. A 2005, 109, 5266-5274. (b) Theander,
M.; Yartsev, A.; Zigmantas, D.; Sundstrom, V.; Mammo, W.; Andersson,
M. R.; Inganas, O. Phys. ReV. B: Condens. Matter 2000, 61, 12957-
12963.
(4) (a) Chirvase, D.; Parisi, J.; Hummelen, J. C.; Dyakonov, V. Nanotech-
nology 2004, 15, 1317-1323. (b) Savenije, T. J.; Kroeze, J. E.; Yang, X.
N.; Loos, J. AdV. Funct. Mater. 2005, 15, 1260-1266.
(5) Sivula, K.; Ball, Z. T.; Watanabe, N.; Fre´chet, J. M. J. AdV. Mater. 2006,
18, 206-210.
(6) Poly(3-hexylthiophene-2,5-diyl) from Rieke Metals, Inc. Our analysis
confirms the advertised RR ) 90-93% DCB GCP: Mn ) 31 kDa, PDI
) 2.0.
(7) (a) Zen, A.; Pflaum, J.; Hirschmann, S.; Zhuang, W.; Jaiser, F.;
Asawapirom, U.; Rabe, J. P.; Scherf, U.; Neher, D. AdV. Funct. Mater.
2004, 14, 757-764. (b) Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.;
Liu, J. S.; Fre´chet, J. M. J.; Toney, M. F. Macromolecules 2005, 38, 3312-
3319.
Figure 2. Performance of photovoltaic devices fabricated with the control
RR-P3HT or poly(1-co-2). The eight-device average power conversion
efficiency (ηPC) at standard conditions as a function of annealing time at
150 °C and typical J-V behavior (insets) observed after 30 and 300 min
of annealing illustrate the difference between the materials. The error bars
represent the 95% confidence interval of the average values.
(8) Goh, C.; Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Fre´chet, J. M.
J. Appl. Phys. Lett. 2005, 86, 122110.
(9) (a) Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard,
K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer,
E. W.; Herwig, P.; de Leeuw, D. M. Nature 1999, 401, 685-688. (b)
Pandey, S. S.; Takashima, W.; Nagamatsu, S.; Endo, T.; Rikukawa, M.;
Kaneto, K. Jpn. J. Appl. Phys., Part 2 2000, 39, L94-L97.
co-2), respectively, at AM 1.5G, 100 mW cm-2), continued
annealing of RR-P3HT devices causes a decrease in performance,
and after 300 min at 150 °C, the average ηPC fell to 2.6%. Subjecting
devices with a poly(1-co-2):PCBM active layer to the same
extended annealing conditions does not strongly effect the average
device performance, and the eight-device average ηPC remained at
3.5%. We observe comparable annealing behavior with the com-
mercial P3HT (see Supporting Information). In addition, we note
the decrease in device performance in the RR-P3HT devices,
caused by phase segregation, occurs at longer times than for the
TEM samples due to the confining effects of the Al cathode.5
Given that we have been able to obtain similar performance at
short annealing times with both the control polymer and poly(1-
(10) Schilinsky, P.; Asawapirom, U.; Scherf, U.; Biele, M.; Brabec, C. J. Chem.
Mater. 2005, 17, 2175-2180.
(11) Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant,
J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C. S.; Ree, M.
Nat. Mater. 2006, 5, 197-203.
(12) Chen, T.-A.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233-
244.
(13) (a) Loewe, R. S.; Khersonsky, S. M.; McCullough, R. D. AdV. Mater.
1999, 11, 250-253. (b) Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. J.
Am. Chem. Soc. 2005, 127, 17542-17547.
(14) Liu, J.; McCullough, R. D. Macromolecules 2002, 35, 9882-9889.
JA064434R
9
J. AM. CHEM. SOC. VOL. 128, NO. 43, 2006 13989