A R T I C L E S
Evans et al.
addition of 1,3-dicarbonyl compounds catalyzed by metal-
ligand complexes, based on palladium,7 scandium,8 copper,9
aluminum,10 nickel,11 magnesium,12 iridium,13 ruthenium,14
lanthanum,15 and hetero-bimetallic alminium-lithium16 com-
plexes have been investigated.
in the presence of an amine cocatalyst (N-methylmorpholine).12a
Dicarbonyl substrate coordination to the Lewis acidic metal-
ligand complex increases the acidity of the former thus
facilitating its deprotonation by a weak amine cocatalyst to
generate the required metal enolate. This technique, come to
be known as “soft enolization,” has become popular in chiral
Lewis acid-catalyzed enantioselective reactions due to the
mildness of the enolization conditions.18
The chiral catalyst complex in the present study consists of
NiBr2 coordinated to two chiral diamine ligands. It was felt that
complexation of the bidentate substrate to the metal center might
liberate one of the diamine ligands enabling it to function as a
base, thus removing the need for the addition of an ancillary
base (eq 2). Thus, the ligand would be able to fulfill a dual
role: it might function not only as a chiral scaffold, but also
one of the liberated diamine ligands might serve as the base
for substrate deprotonation.
Recent studies have led to the rapid development of catalytic
enantioselective additions of 1,3-dicarbonyl compounds to
nitroalkenes, particularly those reactions subject to organocata-
lysts.17 However, the analogous transformation using chiral
metal catalysts is still rare,11g,12,14 and the achievement of high
enantioselectivities with low catalyst loading remains an ongoing
goal. The first reported example by Barnes and co-workers
employed a Mg(II) bis(oxazoline) complex as a chiral catalyst
(7) (a) Hamashima, Y.; Hotta, D.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124,
11240. (b) Hamashima, Y.; Takano, H.; Hotta, D.; Sodeoka, M. Org. Lett.
2003, 5, 3225. (c) Hamashima, Y.; Hotta, D.; Umebayashi, N.; Tsuchiya,
Y.; Suzuki, T.; Sodeoka, M. AdV. Synth. Catal. 2005, 347, 1576.
(8) (a) Kitajima, H.; Ito, K.; Katsuki, T. Tetrahedron 1997, 53, 17015. (b)
Nakajima, M.; Yamamoto, S.; Yamaguchi, Y.; Nakamura, S.; Hashimoto,
S. Tetrahedron 2003, 59, 7307. (c) Kikuchi, S.; Sato, H.; Fukuzawa, S.-i.
Synlett 2006, 1023. (d) Ogawa, C.; Kizu, K.; Shimizu, H.; Takeuchi, M.;
Kobayashi, S. Chem. Asian J. 2006, 1, 121.
(9) (a) Desimoni, G.; Quadrelli, P.; Righetti, P. P. Tetrahedron 1990, 46, 2927.
(b) Halland, N.; Velgaard, T.; Jørgensen, K. A. J. Org. Chem. 2003, 68,
5067. (c) Sibi, M. P.; Chen, J. Org. Lett. 2002, 4, 2933. For a review on
bis(oxazoline) copper(II) complexes, see: (d) Evans, D. A.; Rovis, T.;
Johnson, J. S. Pure Appl. Chem. 1999, 71, 1407. Mukaiyama-Michael
addition: (e) Evans, D. A.; Scheidt, K. A.; Johnston, J. N.; Willis, M. C.
J. Am. Chem. Soc. 2001, 123, 4480.
(10) (a) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 11204.
(b) Taylor, M. S.; Zalatan, D. N.; Lerchner, A. M.; Jacobsen, E. N. J. Am.
Chem. Soc. 2005, 127, 1313. (c) Gandelman, M.; Jacobsen, E. N. Angew.
Chem., Int. Ed. 2005, 44, 2393; Angew. Chem. 2005, 117, 2445. (d)
Vanderwal, C. D.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 14724.
(11) (a) Kanemasa, S.; Oderaotoshi, Y.; Wada, E. J. Am. Chem. Soc. 1999, 121,
8675. (b) Itoh, K.; Kanemasa, S. J. Am. Chem. Soc. 2002, 124, 13394. (c)
Itoh, K.; Oderaotoshi, Y.; Kanemasa, S. Tetrahedron: Asymmetry 2003,
14, 635. (d) Itoh, K.; Hasegawa, M.; Tanaka, J.; Kanemasa, S. Org. Lett.
2005, 7, 979. (e) Zhuang, W.; Hazell, R. G.; Jørgensen, K. A. Chem.
Commun. 2001, 1240. (f) Evans, D. A.; Thomson, R. J.; Franco, F. J. Am.
Chem. Soc. 2005, 127, 10816. A portion the work in this article has been
previously communicated: (g) Evans, D. A.; Seidel, D. J. Am. Chem. Soc.
2005, 127, 9958.
(12) (a) Ji, J. G.; Barnes, D. M.; Zhang, J.; King, S. A.; Wittenberger, S. J.;
Morton, H. E. J. Am. Chem. Soc. 1999, 121, 10215. (b) Barnes, D. M.; Ji,
J. G.; Fickes, M. G.; Fitzgerald, M. A.; King, S. A.; Morton, H. E.; Plagge,
F. A.; Preskill, M.; Wagaw, S. H.; Wittenberger, S. J.; Zhang, J. J. Am.
Chem. Soc. 2002, 124, 13097. (c) MacCulloch, A. C.; Yolka, S.; Jackson,
R. F. W. Synlett 2002, 1700. (d) Sibi, M. P.; Gorikunti, U.; Liu, M.
Tetrahedron 2002, 58, 8357. (e) Palomo, C.; Pazos, R.; Oiarbide, M.;
Garc´ıa, J. M. AdV. Synth. Catal. 2006, 348, 1161. (f) Nichols, P. J.;
DeMattei, J. A.; Barnett, B. R.; LeFur, N. A.; Chuang, T-H.; Piscopio, A.
D.; Koch. K. Org. Lett. 2006, 8, 1495.
The following discussion details the scope of the enantiose-
lective “nitroalkene-Michael” addition reaction (eq 1). The
discussion includes, kinetic studies, a probe of nonlinear effects,
the characterization of intermediate substrate-catalyst complexes
by X-ray crystallography, and the elaboration of the Michael
adducts into chiral 5-membered nitrogen heterocycles.
Results and Discussion
Catalyst Design and Activity. During our ongoing efforts
to develop new asymmetric Lewis acid-catalyzed transforma-
tions,19 the readily prepared and bench-stable nickel complexes
1 emerged as viable catalysts.11g,20,21 Table 1 shows the effect
of solvent and counterions of the nickel catalyst 1 on the reaction
time and selectivity for the Michael addition of dimethyl
malonate to nitrostyrene. Interestingly, while a number of
different counterions are tolerated (entries 5-10), the use of
(13) Tandem Nazarov Cyclization-Michael Addition Sequence: Janka, M.; He,
W.; Haedicke, I. E.; Fronczek, F. R.; Frontier, A. J.; Eisenberg, R. J. Am.
Chem. Soc. 2006, 128, 5312.
(14) Watanabe, M.; Ikagawa, A.; Wang, H.; Murata, K.; Ikariya, T. J. Am. Chem.
Soc. 2004, 125, 11148.
(15) (a) Kim, Y. S.; Matsunaga, S.; Das, J.; Sekine, A.; Ohshima, T.; Shibasaki,
M. J. Am. Chem. Soc. 2000, 122, 6506. (b) Takita, R.; Ohshima, T.;
Shibasaki, M. Tetrahedron Lett. 2002, 43, 4661. (c) Ohshima, T.; Xu, Y.;
Takita, R.; Shimizu, S.; Zhong, D.; Shibasaki, M. J. Am. Chem. Soc. 2002,
124, 14546. (d) Majima, K.; Takita, R.; Okada, A.; Ohshima, T.; Shibasaki,
M. J. Am. Chem. Soc. 2003, 125, 15837. (e) Majima, K.; Tosaki, S.-y.;
Ohshima, T.; Shibasaki, M. Tetrahedron Lett. 2005, 46, 5377.
(16) (a) Arai, T.; Sasai, H.; Aoe, K.; Okamura, K.; Date, T.; Shibasaki, M.
Angew. Chem., Int. Ed. 1996, 35, 104; Angew. Chem. 1996, 108, 103. (b)
Shimizu, S.; Ohori, K.; Arai, T.; Sasai, H.; Shibasaki, M. J. Org. Chem.
1998, 63, 7547. (c) Xu, Y.; Ohori, K.; Ohshima, T.; Shibasaki, M.
Tetrahedron 2002, 58, 2585. (d) Ohshima, T.; Xu, Y.; Takita, R.; Shibasaki,
M. Tetrahedron 2004, 60, 9569.
(17) (a) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125,
12672. (b) Hoashi, Y.; Yabuta, T.; Takemoto, Y. Tetrahedron Lett. 2004,
45, 9185. (c) Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc.
2004, 126, 9906. (d) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.;
Foxman, B. M.; Deng, L. Angew. Chem., Int. Ed. 2005, 44, 105. (e) Okino,
T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc.
2005, 127, 119. (f) Wang, J.; Li, H.; Duan, W.; Zu, L.; Wang, W. Org.
Lett. 2005, 7, 4716. (g) Ye, W.; Xu, J.; Tan, C.-T.; and Tan, C.-H.
Tetrahedron Lett. 2005, 46, 6875. (h) Ye, J.; Dixon, D. J.; Hynes, P. S.
Chem. Commun. 2005, 4481. (i) McCooey, S. H.; Connon, S. J. Angew.
Chem., Int. Ed. 2005, 44, 6367. (j) Terada, M.; Ube, Hitoshi.; Yaguchi, Y.
J. Am. Chem. Soc. 2006, 128, 1454. (k) Lattanzi, A. Tetrahedron:
Asymmetry 2006, 17, 837.
(18) Early investigations performed by Lehnert using titanium: (a) Lehnert, W.
Tetrahedron Lett. 1970, 11, 4723. A variety of metal enolates accessed
transmetalation with metal salts have been examined: (b) House, H. O.;
Crumrine, D. S.; Teranishi, Y.; Olmstead, H. D. J. Am. Chem. Soc. 1973,
95, 3310. For reviews of group 3 and transition metal enolates, see: (c)
Kim, B. M.; Williams, S. F.; Masamune, S. In Comprehensive Organic
Synthesis: Additions to the C-X π-Bond Part 2; Trost, B. M., Fleming, I.,
Heathcock, C. H., Eds.; Pergamon Press: New York, 1991, Vol. 2, Chapter
1.7, pp 239. (d) Patterson, I. In Comprehensive Organic Synthesis:
Additions to the C-X π-Bond Part 2; Trost, B. M., Fleming, I., Heathcock,
C. H., Eds.; Pergamon Press: New York, 1991, Vol. 2, Chapter 1.9, pp
301.
(19) For some recent examples of soft enolization from this laboratory, see:
(a) Evans, D. A.; Tedrow, J. S.; Shaw, J. T.; Downey, C. W. J. Am. Chem.
Soc. 2002, 124, 392. (b) Evans, D. A.; Downey, C. W.; Shaw, J. T.; Tedrow,
J. S. Org. Lett. 2002, 4, 1127. (c) Evans, D. A.; Downey, C. W.; Hubbs,
J. L. J. Am. Chem. Soc. 2003, 125, 8706. (d) Evans, D. A.; Thomson, R.
J. J. Am. Chem. Soc. 2005, 127, 10506.
(20) In initial experiments, complexes derived from copper, cobalt, zinc, and
magnesium salts were found to be inferior to nickel salts in terms of the
reaction rate and selectivity.
(21) For reviews on the use of chiral diamines in asymmetric catalysis and
synthesis, see: (a) Alexakis, A.; Mangeney, P. In AdVanced Asymmetric
Synthesis; Stephenson, G. R., Ed.; Chapman & Hall: London, 1996; pp
93. (b) Bennani, Y. L.; Hanessian, S. Chem. ReV. 1997, 97, 3161. (c) Lucet,
D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed. 1998, 37, 2580.
9
11584 J. AM. CHEM. SOC. VOL. 129, NO. 37, 2007