A R T I C L E S
Pocker and Spyridis
+
-
Table 1. Enol Content of Acetylacetone in Different Solvents and
M LPDE, these solutions are composed of Li(OEt2)2 ClO4
in the Gas Phasea
+
-
ions, while above 4.25 M, a mixture of Li(OEt2)2 ClO4 and
solvent
ꢀb
percent enol
reference
Li(OEt2)+ ClO4 exists.10 The limit of solubility, 6.06 M,
-
gas phase
C6H12
dioxane
CCl4
C6H6
(CH3CH2)O
CHCl3
CH3CO2H
C5H5N
CH3CH2OH
neat
CH3OH
CH3CN
DMA
1.0
2.0
2.2
2.2
2.3
4.3
4.8
6.2
12.3
24.3
25.7
32.6
36.2
37.0
46.6
78.5
92, 93, 97.6
91, 96, 97
82c
4l, 4m, 4k
4g, 4f, 4e
4b
4j, 4e, 4f, 4b
4b, 4j
4b
4j, 4g
4b, 4g, 4j
4h
4j, 4b
corresponds to the ionic composition Li(OEt2)+ ClO4
.
-
Pocker and Buchholz used the ionization of triphenylmethyl
chloride as a sensitive probe of the ionic environment present
in these solutions and observed a 7 × 109 fold increase in trityl
cation formation on going from pure ether to a 5.0 M LPDE
solution.10 Similarly, the rate of rearrangement of 1-phenylallyl
chloride to cinnamyl chloride rises 8.56 × 104 fold on going
from ether to 3.39 M LPDE, while the aminolysis of 4-nitro-
phenyl acetate by imidazole is accelerated by a factor of
5.8 × 104 from 0 to 4.49 M LPDE.11,13,14 The solvatochro-
matic behavior of Reichardt’s dye, phenol blue, and sub-
stituted nitroanilines in these media has been explored as has
the ability of these solutions to facilitate proton-transfer
reactions.16-18 Braun and Sauer derived Ω values, and from
these approximate ET30 values, for LPDE solutions by observing
the endo/exo product ratio for the Diels-Alder reaction be-
tween cyclopentadiene and methyl acrylate.19 Forman and
Dailey noted a 8.9-fold rate increase for the [4+2] cycloaddi-
tion of 9,10-dimethylanthracene and acrylonitrile.20 Recent
work has focused on exploiting the synthetic utility of these
media.21
94.6, 95, 95, 96c
89,c 97
95c
82.6, 87
67,c 73, 73.4
82
74.4, 82c
80.9,c 81, 82
68, 74,c 74
52.9, 62c
66
4a, 4e, 4f
4j, 4b, 4e
4j, 4b
4e
(CH3)2SO
H2O
60,c 62, 63
15.5,d 16
4b, 4e, 4f
4i, 4e
a At 25 °C unless otherwise noted. b Taken from: Handbook of Chemistry
and Physics, 60th ed.; Weast, R. C., Ed.; CRC Press: Boca Raton, FL,
1980; pp E56-E58. c At 33 °C. d At 20 °C.
stabilized by conjugation and intramolecular hydrogen bonds,
Scheme 1.5 Furthermore, the two Kekule structures that can be
depicted for symmetrical acyclic enols such as acetylacetone
are equivalent, implying that the hydrogen bond is symmetrical.
This has been shown to be the case by electron diffraction
studies.5,6
We have expanded on our earlier observations by investigat-
ing the effects of these room-temperature molten salt solutions
Previous work in these laboratories has elaborated on the early
observations of Willard et al. and Sille´n et al. concerning the
extraordinary solubility of strictly anhydrous lithium perchlorate
in diethyl ether.7-18 Solutions containing up to 6.06 M lithium
perchlorate in ether, hereafter LPDE, are possible. These highly
polar concentrated salt solutions have been shown by conductiv-
ity and vapor pressure data to exist as complex ionic clusters
composed of LiClO4 and Et2O, rather than simple aggregates
of ions.8,9 Solubility-temperature curves, NMR spectroscopy,
and heats of solution measurements indicate that below 4.25
(7) (a) Willard, H. H.; Smith, G. F. J. Am. Chem. Soc. 1923, 45, 286. (b)
Schilt, A. A. Perchloric Acid and Perchlorates; G. Fredwick Smith
Chemical Co.: Columbus, OH, 1979; pp 32-38. (c) For a treatise on the
effects of added salt on organic and organometallic chemistry, see: Loupy,
A.; Tchoubar, B. Salt Effects in Organic and Organometallic Chemistry;
VCH: New York, 1992 (originally published in French under the title
Effects de sels en Chimie organique et organometallique; Editions
Bordas: Paris, 1988). For reviews of the role of electrostatics in biomo-
lecular recognition and control, see: (d) Carbeck, J. D.; Colton, I. J.; Gao,
J.; Whitesides, G. M. Acc. Chem. Res. 1998, 31, 343. (e) Koshland, D. E.,
Jr. Pure Appl. Chem. 1971, 25, 119.
(8) Eklelin, K.; Sille´n, L. G. Acta Chem. Scand. 1953, 7, 987.
(9) (a) Johnson, O. Ph.D. Thesis, University of Michigan, Ann Arbor, MI,
1948. (b) Chu, J. C. H. Ph.D. Thesis, University of Michigan, Ann Arbor,
MI, 1949.
(10) Pocker, Y.; Buchholz, R. F. J. Am. Chem. Soc. 1970, 92, 2075.
(11) Pocker, Y.; Buchholz, R. F. J. Am. Chem. Soc. 1970, 92, 4033.
(12) Pocker, Y.; Buchholz, R. F. J. Am. Chem. Soc. 1971, 93, 2905.
(13) Pocker, Y.; Ellsworth, D. L. J. Am. Chem. Soc. 1977, 99, 2276.
(14) Pocker, Y.; Ellsworth, D. L. J. Am. Chem. Soc. 1977, 99, 2284.
(15) Pocker, Y.; Ciula, J. C. J. Am. Chem. Soc. 1988, 110, 2904.
(16) Pocker, Y.; Ciula, J. C. J. Am. Chem. Soc. 1989, 111, 4728.
(17) Pocker, Y.; Spyridis, G. T. J. Am. Chem. Soc. 2002, 124, 7390.
(18) (a) Reuber, M. S.; Pocker, Y. Proceedings of the 6th International
Symposium on Solute-Solute-SolVent Interactions; Pergamon Press:
Oxford, 1982; 5P-13. (b) Rueber, M. S. Ph.D. Thesis, University of
Washington, Seattle, WA, 1987.
(4) (a) Burdett, J. L.; Rogers, M. T. J. Am. Chem. Soc. 1964, 86, 2105. (b)
Burdett, J. L.; Rogers, M. T. Can. J. Chem. 1965, 43, 1516. (c) Burdett, J.
L.; Rogers, M. T. J. Phys. Chem. 1966, 70, 939. (d) Billman, J. H.; Sojka,
S. A.; Taylor, P. R. J. Chem. Soc., Perkins Trans. 2 1972, 2034. (e) Spencer,
J. N.; Holmboe, E. S.; Kirshenbaum, M. R.; Firth, D. W.; Pinto, P. B.
Can. J. Chem. 1981, 60, 1178. (f) Allen, G.; Dwek, R. A. J. Chem. Soc. B
1966, 161. (g) Reeves, L. W. Can. J. Chem. 1957, 35, 1351. (h) Kondo,
G.; Takemoto, T.; Ikenone, T. J. Chem. Soc. Jpn. Ind. Chem. Sect. 1968,
68, 1404. (i) Schwarzenbach, G.; Felder, E. HelV. Chem. Acta 1944, 27,
1044. (j) Emsley, J.; Freeman, N. J. J. Mol. Struct. 1987, 161, 193. (k)
Folkendt, M. M.; Weiss-Lopez, B. E.; Chauvel, J. P., Jr.; True, N. S. J.
Phys. Chem. 1985, 89, 3347. (l) Mella, T. P.; Merrifield, R. J. Appl. Chem.
1969, 19, 79. (m) Strohmeier, W.; Huhne, I. Z. Naturforsch. 1952, 7B,
184. For 17O NMR work performed on acetylacetone and other â-diketones,
see: (n) Gorodetsky, M.; Luz, Z.; Mazur, Y. J. Am. Chem. Soc. 1967, 89,
1183. (o) Luz, Z.; Silver, B. J. Phys. Chem. 1966, 70, 1328.
(5) For the crystal structure of 1, see: (a) Boese, R.; Antipin, M. Y.; Bla¨ser,
D.; Lyssenko, K. A. J. Phys. Chem. B 1998, 102, 8654. (b) Lowery, A.
H.; D’Antonio, P.; George, C.; Karle, J. Am. Chem. Soc. 1971, 93, 6399.
(c) Andreassen, A. L.; Bauer, S. H. J. Mol. Struct. 1972, 12, 381. For recent
quantum mechanical calculations of the enol of 1, see: (d) Mavri, J.;
Grdadolnik, J. J. Phys. Chem. A 2001, 105, 2045. (e) Mavri, J.; Grdadolnik,
J. J. Phys. Chem. A 2001, 105, 2039.
(6) (a) Camerman, A.; Mastropaolo, D.; Camerman, N. J. Am. Chem. Soc.
1983, 105, 1584. These authors have published a structure of acetylacetone
in the presence of diphenylhydantoin and 9-ethyladenine where the
hydrogen bond is not symmetrical. They claim that there are no interactions
between the tautomers of acetylacetone and the cosolutes. Crystal structures
of other symmetrical â-diketones, such as 1,3-diphenyl-1,3-propanedione,
ref 6b, reveal symmetrical enols. An interesting case where an unsym-
metrical enol exists is that of 3-phenyl-1-(2,4,6-triphenylphenyl)propane-
1,3-dione, ref 6c. Here, steric considerations force the hydroxy group to
be in the neighborhood of the unsubstituted phenyl ring, and two different
C-O bond lengths are observed. (b) Kaitner, B.; Mestrovic, E. Acta
Crystallogr. 1993, C49, 1523. (c) Abram, S.; Abram, U.; Zimmermann, T.
Acta Crystallogr. 1993, C50, 765.
(19) Braun, R.; Sauer, J. Chem. Ber. 1986, 119, 1269.
(20) Forman, M. A.; Dailey, W. P. J. Am. Chem. Soc. 1991, 113, 2761.
(21) For the synthetic utility of the solvent system lithium perchlorate-diethyl
ether, see: (a) Heydari, A.; Larijani, H.; Emami, J.; Karami, B. Tetrahedron
Lett. 2000, 41, 2471. (b) Saito, N.; Grieco, P. A. Yuki Gosei Kagaku
Kyokaishi 2000, 58, 39. (c) Babu, B. S.; Balasubramanian, K. K. Carbohydr.
Lett. 1999, 3, 339. (d) Sankararaman, S.; Nesakumar, J. E. J. Chem. Soc.,
Perkin Trans. 1 1999, 21, 3173. (e) Earle, M. J.; McCormac, P. B.; Seddon,
K. R. Green Chem. 1999, 1, 23. (f) Babu, B. S.; Balasubramanian, K. K.
Tetrahedron Lett. 1998, 39, 9287. (g) Kawamura, M.; Kobayashi, S.
Tetrahedron Lett. 1999, 40, 2471. (h) Palani, N.; Chadha, A.; Balasubra-
manian, K. K. J. Org. Chem. 1998, 63, 5318. (i) Zarghi, A.; Naimi-Jamal,
M. R.; Webb, S. A.; Balalaie, S.; Saidi, M. R.; Ipaktschi, J. Eur. J. Org.
Chem. 1998, 197. (j) Jenner, G.; Ben Salem, R. Tetrahedron 1997, 53,
4637. (k) Kiselev, V. D.; Kashaeva, E. A.; Luzanova, N. A.; Konovalov,
A. I. Russ. J. Gen. Chem. 1997, 67, 1361. (l) Sudha, R.; Maloia, N. K.;
Geetha, S. V.; Sankararaman, S. J. Org. Chem. 1996, 61, 1877. (m)
Ipaktschi, J.; Eckert, T. Chem. Ber. 1995, 128, 1171. (n) Flohr, A.;
Waldmann, H. J. Prakt. Chem. 1995, 37, 609. (o) Wustrow, D. J.; Smith,
W. J., III; Wise, L. D. Tetrahedron Lett. 1994, 35, 61. (p) Ipaktschi, J.;
Heydari, A. Chem. Ber. 1993, 126, 1905. (q) Grieco, P. A. In Organic
Chemistry: Its Language and Its State of the Art; Kisakurek, M. V., Ed.;
VCH: Weinheim, 1993; p 133. (r) Ipaktschi, J.; Heydari, A. Angew. Chem.,
Int. Ed. Engl. 1992, 31, 313. (s) Grieco, P. A. Aldrichimica Acta 1991, 24,
59. (t) Waldmann, H. Angew. Chem., Int. Ed. Engl. 1991, 24, 59.
9
10374 J. AM. CHEM. SOC. VOL. 124, NO. 35, 2002