ACS Catalysis
Page 6 of 6
1
2
3
4
5
6
7
8
Malacria, M.; Gimbert, Y.; Gandon, V.; Fensterbank, L., Assessing
Ligand and Counterion Effects in the Noble Metal Catalyzed
Cycloisomerization Reactions of 1,6-Allenynes: Combined
Experimental and Theoretical Approach. ACS Catal. 2016, 6, 5146–
5160.
(6) (a) Mamane, V.; Hannen, P.; Fürstner, A., Synthesis of
phenanthrenes and polycyclic heteroarenes by transition-metal
catalyzed cycloisomerization reactions. Chem. Eur. J. 2004, 10,
4556–4575. (b) Morán-Poladura, P.; Rubio, E.; González, J. M.,
Intramolecular CH Activation through Gold(I)-Catalyzed
Reaction of Iodoalkynes. Angew. Chem. Int. Ed. 2015, 54, 3052–
3055.
from (E)-Bromostyrene: Mechanisms of Formation and Reaction.
J. Org. Chem. 2003, 68, 3205–3215. (b) Rappoport, Z.; Kobayashi,
S.; Stanger, A.; Boese, R., Crystal Structure of 1,2-Diphenyl-5,7-di-
tert-butylspiro[2.5]octa-1,4,7-trien-6-one, a Possible Model for
Diphenylvinylidenephenonium Ions. J. Org. Chem. 1999, 64,
4370–4375. (c) Yamataka, H.; Biali, S. E.; Rappoport, Z., Structural
Sensitivity of 1,2-Aryl Rearrangements in Triarylvinyl Cations:
Bridged Transition States vs Bridged Intermediates and Inversion
vs Helicity Retention. J. Org. Chem. 1998, 63, 9105–9108.
a
9
(21) Jahnke, E.; Tykwinski, R. R., The Fritsch-Buttenberg-Wiechell
rearrangement: modern applications for an old reaction. Chem.
Commun. 2010, 46, 3235–3249.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(22) (a) Zhuo, L.-G.; Shi, Y.-C.; Yu, Z.-X., Using the Type II
Cycloisomerization Reaction of 1,6-Enynes as a Mechanistic Probe
to Identify the Real Catalytic Species of GaX3 and InX3. Asian J.
Org. Chem. 2014, 3, 842–846. (b) Zhuo, L.-G.; Zhang, J.-J.; Yu, Z.-
X., Mechanisms of the InCl3-Catalyzed Type-I, II, and III
Cycloisomerizations of 1,6-Enynes. J. Org. Chem. 2014, 79, 3809–
3820. (c) Zhuo, L.-G.; Zhang, J.-J.; Yu, Z.-X., DFT and Experimental
Exploration of the Mechanism of InCl3-Catalyzed Type II
Cycloisomerization of 1,6-Enynes: Identifying InCl2+ as the
Catalytic Species and Answering why Nonconjugated Dienes are
Generated. J. Org. Chem. 2012, 77, 8527–8540.
(7) Soriano, E.; Marco-Contelles, J., Mechanisms of the Transition
Metal-Mediated Hydroarylation of Alkynes and Allenes.
Organometallics 2006, 25, 4542–4553.
(8) Muratore, M. E.; Echavarren, A. M. Gold-Catalyzed
Hydroarylation of Alkynes. In The Chemistry of Organogold
Compounds; Rappoport, Z., Liebman, J. F., Marek, I., Eds.; John
Wiley & Sons, Ltd.: Chichester, U.K., 2015; pp 805−900.
(9) Wu, W.; Jiang, H., Haloalkynes: A Powerful and Versatile
Building Block in Organic Synthesis. Acc. Chem. Res. 2014, 47,
2483–2504.
(10) (a) Speck, K.; Karaghiosoff, K.; Magauer, T., Sequential O–
H/C–H Bond Insertion of Phenols Initiated by the Gold(I)-
Catalyzed Cyclization of 1-Bromo-1,5-enynes. Org. Lett. 2015, 17,
1982–1985. (b) Rong, Z.; Echavarren, A. M., Broad scope gold(I)-
catalysed polyenyne cyclisations for the formation of up to four
carbon–carbon bonds. Org. Biomol. Chem. 2017, 15, 2163–2167.
(11) Bai, Y.-B.; Luo, Z.; Wang, Y.; Gao, J.-M.; Zhang, L., Au-
Catalyzed Intermolecular [2+2] Cycloadditions between
Chloroalkynes and Unactivated Alkenes. J. Am. Chem. Soc. 2018,
140, 5860–5865.
(12) Liu, C.; Xue, Y.; Ding, L.; Zhang, H.; Yang, F. Au-Catalyzed
Addition of Nucleophiles to Chloroalkynes:
A Regio- and
Stereoselective Synthesis of (Z)-Alkenyl Chlorides Eur. J. Org.
Chem. 2018, 6537–6540.
(13) Five-membered ring chloronium cations have been proposed
in the Lewis-acid catalyzed opening of chloro vinyl epoxides:
Shemet, A.; Sarlah, D.; Carreira, E. M., Stereochemical Studies of
the Opening of Chloro Vinyl Epoxides: Cyclic Chloronium Ions as
Intermediates. Org. Lett. 2015, 17, 1878–1881.
(14) See Supporting Information for additional details.
(15) In the reaction of 1c with 2a, 1,4-enyne 3a was obtained
together with a mixture of 1-phenyl-2-trimethylsilylacetylene and
allyliodide. This reaction did not take place in the absence of
catalyst B. See Supporting Information for additional details.
(16) BHT reacts with HBr undergoing proto-dealkylation,
minimizing decomposition of the starting material under the
reaction conditions. For this purpose, 2-methylbut-2-ene could
also be used, although a larger excess was required.
(17) (a) Hashmi, A. S. K.; Lauterbach, T.; Nösel, P.; Vilhelmsen, M.
H.; Rudolph, M.; Rominger, F., Dual Gold Catalysis: σ,π-Pro yne
Acetylide and Hydroxyl-Bridged Digold Complexes as Easy-To-
Prepare and Easy-To-Handle Precatalysts. Chem. Eur. J. 2013, 19,
1058–1065. (b) Ferrer, S.; Echavarren, A. M., Role of σ,π-Digold(I)
Alkyne Complexes in Reactions of Enynes. Organometallics 2017,
37, 781–786. (c) Mader, S.; Molinari, L.; Rudolph, M.; Romingerꢀ,
F.; Hashmiꢀ, A. S. K., Dual Gold-Catalyzed Head-to-Tail Coupling
of Iodoalkynes. Chem. Eur. J. 2015, 21, 3910–3913.
(18) See the Supporting Information (Scheme S4) for the
mechanistic proposal.
(19) Calculations were performed with M06/6-31G(d) (C, H, P, Si)
and LANL2DZ (Br, Au, In) in CH2Cl2 (SMD). See the Supporting
Information for full computational details.
(20) (a) Gronheid, R.; Zuilhof, H.; Hellings, M. G.; Cornelisse, J.;
Lodder, G., Photochemical Generation of a Primary Vinyl Cation
ACS Paragon Plus Environment
6