Journal of the American Chemical Society
Communication
Reversible binding of molecular oxygen to low-valent iridium
complexes has been known since Vaska’s pioneering studies,
Angew. Chem., Int. Ed. 2003, 42, 2054. (e) Miyabe, H.; Matsumura, A.;
Moriyama, K.; Takemoto, Y. Org. Lett. 2004, 6, 4631. (f) Teichert, J. F.;
Feringa, B. L. Angew. Chem., Int. Ed. 2010, 49, 2486.
25
and treatment of 5 with allyl alcohol rac-1 (15 equiv) in CDCl3
indeed resulted in the formation of a 1:1 mixture of 2 and 5.
allyltrimethylsilane at a decreased rate (Figure S8). This
experiment underscores the robustness of the catalyst system,
since iridium can re-enter the catalytic cycle upon oxygen
dissociation.
(
(
6) Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 15164.
7) Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc.
2
003, 125, 14272.
(8) For selected examples, see: (a) Bartels, B.; García-Yebra, C.;
Helmchen, G. Eur. J. Org. Chem. 2003, 2003, 1097. (b) Liu, W.-B.;
Zhang, X.; Dai, L.-X.; You, S.-L. Angew. Chem., Int. Ed. 2012, 51, 5183.
(c) Gartner, M.; Mader, S.; Seehafer, K.; Helmchen, G. J. Am. Chem. Soc.
̈
2011, 133, 2072. (d) Liu, W.-B.; Reeves, C. M.; Stoltz, B. M. J. Am.
Chem. Soc. 2013, 135, 17298. (e) Chen, W.; Hartwig, J. F. J. Am. Chem.
Soc. 2013, 135, 2068. (f) Chen, M.; Hartwig, J. F. Angew. Chem., Int. Ed.
2014, 53, 8691. (g) Alexakis, A.; Polet, D. Org. Lett. 2004, 6, 3529.
(h) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558.
In summary, we have isolated and characterized key complexes
relevant to the catalytic cycle of iridium-catalyzed allylic
substitution involving (P,olefin) ligand L, including substrate−
2
iridium complexes, namely, (η -allylic alcohol)iridium(I) and
3
(
η -allyl)iridium(III). Two practical consequences emanate from
(9) (a) Defieber, C.; Ariger, M. A.; Moriel, P.; Carreira, E. M. Angew.
this work: the catalyst is optimally prepared in situ in the
presence of allyl alcohol, and the robustness of the iridium
catalyst system stems in part from reversible dioxygen binding.
These results form the basis of in-depth studies currently
ongoing in our laboratory.
Chem., Int. Ed. 2007, 46, 3139. (b) Lafrance, M.; Roggen, M.; Carreira, E.
M. Angew. Chem., Int. Ed. 2012, 51, 3470. (c) Schafroth, M. A.; Sarlah,
D.; Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2012, 134, 20276.
(d) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2013,
135, 994. (e) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. Angew. Chem.,
Int. Ed. 2013, 52, 7532. (f) Krautwald, S.; Sarlah, D.; Schafroth, M. A.;
Carreira, E. M. Science 2013, 340, 1065. (g) Hamilton, J. Y.; Sarlah, D.;
Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3006. (h) Krautwald, S.;
Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136,
ASSOCIATED CONTENT
Supporting Information
■
*
S
3
020. (i) Hamilton, J. Y.; Hauser, N.; Sarlah, D.; Carreira, E. M. Angew.
Chem., Int. Ed. 2014, 53, 10759.
Experimental procedures and characterization data (PDF)
Crystallographic data for (R,R,R)-2, (R,R,S)-2, [3c]OTf,
(10) Hartwig’s studies: (a) Leitner, A.; Shu, C.; Hartwig, J. F. Proc. Natl.
Acad. Sci. U. S. A. 2004, 101, 5830. (b) Leitner, A.; Shekhar, S.; Pouy, M.
J.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 15506. (c) Markovic, D.;
́
Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 11680. (d) Madrahimov, S. T.;
Markovic, D.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 7228.
(e) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461.
(f) Madrahimov, S. T.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 8136.
(g) Madrahimov, S. T.; Li, Q.; Sharma, A.; Hartwig, J. F. J. Am. Chem.
Soc. 2015, 137, 14968.
AUTHOR INFORMATION
ORCID
(11) Helmchen’s studies: (a) Bartels, B.; Helmchen, G. Chem.
̈
Commun. 1999, 741. (b) Bartels, B.; García-Yebra, C.; Rominger, F.;
Helmchen, G. Eur. J. Inorg. Chem. 2002, 2002, 2569. (c) Spiess, S.;
Welter, C.; Franck, G.; Taquet, J.-P.; Helmchen, G. Angew. Chem., Int.
Notes
Ed. 2008, 47, 7652. (d) Spiess, S.; Raskatov, J. A.; Gnamm, C.; Bro
K.; Helmchen, G. Chem. - Eur. J. 2009, 15, 11087. (e) Raskatov, J. A.;
Spiess, S.; Gnamm, C.; Brodner, K.; Rominger, F.; Helmchen, G. Chem. -
Eur. J. 2010, 16, 6601. (f) Raskatov, J. A.; Jakel, M.; Straub, B. F.;
̈
dner,
The authors declare no competing financial interest.
̈
ACKNOWLEDGMENTS
■
̈
We are grateful to ETH Zu
̈
rich and the Swiss National Science
Rominger, F.; Helmchen, G. Chem. - Eur. J. 2012, 18, 14314.
(12) You’s studies: Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You,
S.-L. J. Am. Chem. Soc. 2012, 134, 4812.
Foundation (200020_152898) for financial support. We thank
Dr. N. Trapp and M. Solar for X-ray crystallographic analysis and
Dr. M.-O. Ebert, R. Arnold, R. Frankenstein, and S. Burkhardt for
NMR measurements.
(13) Bhaskararao, B.; Sunoj, B. S. J. Am. Chem. Soc. 2015, 137, 15712.
(
2
(
14) Drinkel, E.; Bricen
010, 29, 2503.
15) Thermal ellipsoids are shown at the 50% probability level.
̃
o, A.; Dorta, R.; Dorta, R. Organometallics
REFERENCES
■
Hydrogen atoms, noncoordinating counterions, and cocrystallized
solvent molecules have been omitted for clarity.
(
1) (a) Liu, W.-B.; Xia, J.-B.; You, S.-L. Top. Organomet. Chem. 2011,
8, 155. (b) Hartwig, J. F.; Pouy, M. J. Top. Organomet. Chem. 2011, 34,
69. (c) Helmchen, G.; Dahnz, A.; Dubon, P.; Schelwies, M.; Weihofen,
3
(
16) Faller, J. W.; Incorvia, M. J.; Thomsen, M. E. J. Am. Chem. Soc.
969, 91, 518.
17) Pregosin, P. S. NMR in Organometallic Chemistry; Wiley-VCH:
Weinheim, Germany, 2012; p 118.
1
1
(
R. Chem. Commun. 2007, 675.
2) (a) Trost, B. M. J. Org. Chem. 2004, 69, 5813. (b) Poli, G.; Prestat,
G.; Liron, F.; Kammerer-Pentier, C. Top. Organomet. Chem. 2011, 38, 1.
c) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395. For
selected examples of Pd-catalyzed allylic substitution with high branched
selectivity, see: (d) Pret t, R.; Pfaltz, A. Angew. Chem., Int. Ed. 1998, 37,
23. (e) Hayashi, T.; Kawatsura, M.; Uozumi, Y. J. Am. Chem. Soc. 1998,
20, 1681.
(
(
(
18) Wallach, O. Liebigs Ann. Chem. 1895, 286, 90.
19) Crystals of [3c]OTf were dissolved at −78 °C in CD Cl , and an
(
2
2
NMR spectrum was acquired at −70 °C. The spectrum matches the low-
temperature NMR spectrum of amorphous [3c]OTf (Figure S4).
́ ̂
o
3
1
(
(
(
(20) Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coord. Chem. Rev.
1
973, 10, 335.
3) Takeuchi, R.; Kashio, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 263.
4) Janssen, J. P.; Helmchen, G. Tetrahedron Lett. 1997, 38, 8025.
5) (a) Fischer, C.; Defieber, C.; Suzuki, T.; Carreira, E. M. J. Am.
Chem. Soc. 2004, 126, 1628. (b) Zhang, Q.; Stockdale, D. P.; Mixdorf, J.
C.; Topczewski, J. J.; Nguyen, H. M. J. Am. Chem. Soc. 2015, 137, 11912.
(21) Ward, T. R. Organometallics 1996, 15, 2836.
(22) Linden, A.; Dorta, R. Acta Crystallogr. 2010, C66, m290.
(
́ ́
23) Lebel, H.; Ladjel, C.; Belanger-Gariepy, F.; Schaper, F. J.
Organomet. Chem. 2008, 693, 2645.
(
(
24) Laplaca, S. J.; Ibers, J. A. J. Am. Chem. Soc. 1965, 87, 2581.
25) Vaska, L. Science 1963, 140, 809.
(
1
c) Fuji, K.; Kinoshita, N.; Kawabata, T.; Tanaka, K. Chem. Commun.
999, 2289. (d) Kanayama, T.; Yoshida, K.; Miyabe, H.; Takemoto, Y.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX